Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -4,10 +4,7 @@ from llama_cpp import Llama
|
|
4 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
5 |
import uvicorn
|
6 |
import re
|
7 |
-
from
|
8 |
-
import spaces
|
9 |
-
|
10 |
-
load_dotenv()
|
11 |
|
12 |
app = FastAPI()
|
13 |
|
@@ -50,40 +47,29 @@ model_configs = [
|
|
50 |
class ModelManager:
|
51 |
def __init__(self):
|
52 |
self.loaded = False
|
|
|
53 |
|
54 |
def load_model(self, model_config):
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
59 |
|
60 |
def load_all_models(self):
|
61 |
-
if self.loaded:
|
62 |
-
return global_data['models']
|
63 |
-
|
64 |
-
try:
|
65 |
with ThreadPoolExecutor() as executor:
|
66 |
-
|
67 |
-
|
68 |
-
for future in as_completed(futures):
|
69 |
-
model = future.result()
|
70 |
-
if model:
|
71 |
-
models.append(model)
|
72 |
-
|
73 |
-
global_data['models'] = models
|
74 |
self.loaded = True
|
75 |
-
|
76 |
-
|
77 |
-
pass
|
78 |
|
79 |
model_manager = ModelManager()
|
80 |
-
model_manager.load_all_models()
|
81 |
|
82 |
class ChatRequest(BaseModel):
|
83 |
message: str
|
84 |
-
top_k: int = 50
|
85 |
-
top_p: float = 0.95
|
86 |
-
temperature: float = 0.7
|
87 |
|
88 |
def normalize_input(input_text):
|
89 |
return input_text.strip()
|
@@ -97,61 +83,50 @@ def remove_duplicates(text):
|
|
97 |
seen_lines = set()
|
98 |
for line in lines:
|
99 |
if line not in seen_lines:
|
100 |
-
seen_lines.add(line)
|
101 |
unique_lines.append(line)
|
|
|
102 |
return '\n'.join(unique_lines)
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
unique_responses = []
|
107 |
-
for response in responses:
|
108 |
-
normalized_response = remove_duplicates(response['response'])
|
109 |
-
if normalized_response not in seen:
|
110 |
-
seen.add(normalized_response)
|
111 |
-
unique_responses.append(response)
|
112 |
-
return unique_responses
|
113 |
-
|
114 |
-
def generate_chat_response(request, model_data):
|
115 |
-
model = model_data['model']
|
116 |
try:
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
|
123 |
@app.post("/generate")
|
124 |
async def generate(request: ChatRequest):
|
125 |
try:
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
return {
|
142 |
-
"best_response": best_response,
|
143 |
-
"all_responses": responses
|
144 |
-
}
|
145 |
-
except Exception:
|
146 |
-
pass
|
147 |
-
|
148 |
-
@app.api_route("/{method_name:path}", methods=["GET", "POST", "PUT", "DELETE", "PATCH"])
|
149 |
-
async def handle_request(method_name: str, request: Request):
|
150 |
try:
|
151 |
-
|
152 |
-
return
|
153 |
-
except Exception:
|
154 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
if __name__ == "__main__":
|
157 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
4 |
from concurrent.futures import ThreadPoolExecutor, as_completed
|
5 |
import uvicorn
|
6 |
import re
|
7 |
+
from spaces import GPU
|
|
|
|
|
|
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
|
|
47 |
class ModelManager:
|
48 |
def __init__(self):
|
49 |
self.loaded = False
|
50 |
+
self.models = {}
|
51 |
|
52 |
def load_model(self, model_config):
|
53 |
+
if model_config['name'] not in self.models:
|
54 |
+
try:
|
55 |
+
self.models[model_config['name']] = Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'])
|
56 |
+
except Exception as e:
|
57 |
+
print(f"Error loading model {model_config['name']}: {e}")
|
58 |
|
59 |
def load_all_models(self):
|
60 |
+
if not self.loaded:
|
|
|
|
|
|
|
61 |
with ThreadPoolExecutor() as executor:
|
62 |
+
for config in model_configs:
|
63 |
+
executor.submit(self.load_model, config)
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
self.loaded = True
|
65 |
+
|
66 |
+
return self.models
|
|
|
67 |
|
68 |
model_manager = ModelManager()
|
69 |
+
global_data['models'] = model_manager.load_all_models()
|
70 |
|
71 |
class ChatRequest(BaseModel):
|
72 |
message: str
|
|
|
|
|
|
|
73 |
|
74 |
def normalize_input(input_text):
|
75 |
return input_text.strip()
|
|
|
83 |
seen_lines = set()
|
84 |
for line in lines:
|
85 |
if line not in seen_lines:
|
|
|
86 |
unique_lines.append(line)
|
87 |
+
seen_lines.add(line)
|
88 |
return '\n'.join(unique_lines)
|
89 |
|
90 |
+
@GPU(duration=0)
|
91 |
+
def generate_model_response(model, inputs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
try:
|
93 |
+
response = model(inputs)
|
94 |
+
return remove_duplicates(response['choices'][0]['text'])
|
95 |
+
except Exception as e:
|
96 |
+
print(f"Error generating model response: {e}")
|
97 |
+
return ""
|
98 |
|
99 |
@app.post("/generate")
|
100 |
async def generate(request: ChatRequest):
|
101 |
try:
|
102 |
+
inputs = normalize_input(request.message)
|
103 |
+
with ThreadPoolExecutor() as executor:
|
104 |
+
futures = [
|
105 |
+
executor.submit(generate_model_response, model, inputs)
|
106 |
+
for model in global_data['models'].values()
|
107 |
+
]
|
108 |
+
responses = [{'model': model_name, 'response': future.result()} for model_name, future in zip(global_data['models'].keys(), as_completed(futures))]
|
109 |
+
unique_responses = remove_repetitive_responses(responses)
|
110 |
+
return unique_responses
|
111 |
+
except Exception as e:
|
112 |
+
print(f"Error generating responses: {e}")
|
113 |
+
raise HTTPException(status_code=500, detail="Error generating responses")
|
114 |
+
|
115 |
+
@app.middleware("http")
|
116 |
+
async def process_request(request: Request, call_next):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
try:
|
118 |
+
response = await call_next(request)
|
119 |
+
return response
|
120 |
+
except Exception as e:
|
121 |
+
print(f"Request error: {e}")
|
122 |
+
raise HTTPException(status_code=500, detail="Internal Server Error")
|
123 |
+
|
124 |
+
def remove_repetitive_responses(responses):
|
125 |
+
unique_responses = {}
|
126 |
+
for response in responses:
|
127 |
+
if response['model'] not in unique_responses:
|
128 |
+
unique_responses[response['model']] = response['response']
|
129 |
+
return unique_responses
|
130 |
|
131 |
if __name__ == "__main__":
|
132 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|