Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -21,15 +21,15 @@ global_data = {
|
|
21 |
|
22 |
# Configuración de los modelos
|
23 |
model_configs = [
|
24 |
-
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf"},
|
25 |
-
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf"},
|
26 |
-
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf"},
|
27 |
-
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf"},
|
28 |
-
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf"},
|
29 |
-
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf"},
|
30 |
-
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf"},
|
31 |
-
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf"},
|
32 |
-
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf"}
|
33 |
]
|
34 |
|
35 |
# Clase para gestionar modelos
|
@@ -38,8 +38,8 @@ class ModelManager:
|
|
38 |
self.models = []
|
39 |
|
40 |
def load_model(self, model_config):
|
41 |
-
print(f"Cargando modelo {model_config['
|
42 |
-
return Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'])
|
43 |
|
44 |
def load_all_models(self):
|
45 |
print("Iniciando carga de modelos...")
|
@@ -50,7 +50,7 @@ class ModelManager:
|
|
50 |
try:
|
51 |
model = future.result()
|
52 |
models.append(model)
|
53 |
-
print(f"Modelo cargado exitosamente: {
|
54 |
except Exception as e:
|
55 |
print(f"Error al cargar el modelo: {e}")
|
56 |
print("Todos los modelos han sido cargados.")
|
@@ -68,9 +68,10 @@ class ChatRequest(BaseModel):
|
|
68 |
temperature: float = 0.7
|
69 |
|
70 |
# Función para generar respuestas de chat
|
71 |
-
def generate_chat_response(request,
|
72 |
try:
|
73 |
user_input = normalize_input(request.message)
|
|
|
74 |
response = llm.create_chat_completion(
|
75 |
messages=[{"role": "user", "content": user_input}],
|
76 |
top_k=request.top_k,
|
@@ -78,54 +79,46 @@ def generate_chat_response(request, llm):
|
|
78 |
temperature=request.temperature
|
79 |
)
|
80 |
reply = response['choices'][0]['message']['content']
|
81 |
-
return {"response": reply, "literal": user_input}
|
82 |
except Exception as e:
|
83 |
-
return {"response": f"Error: {str(e)}", "literal": user_input}
|
84 |
|
85 |
def normalize_input(input_text):
|
86 |
return input_text.strip()
|
87 |
|
88 |
def remove_duplicates(text):
|
89 |
-
# Eliminar patrones repetitivos específicos
|
90 |
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
|
91 |
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
|
92 |
-
|
93 |
-
# Eliminar el marcador [/INST]
|
94 |
text = text.replace('[/INST]', '')
|
95 |
-
|
96 |
-
# Generaliza la eliminación de duplicados
|
97 |
lines = text.split('\n')
|
98 |
unique_lines = list(dict.fromkeys(lines))
|
99 |
return '\n'.join(unique_lines).strip()
|
100 |
|
101 |
def remove_repetitive_responses(responses):
|
102 |
-
# Filtra respuestas repetitivas
|
103 |
seen = set()
|
104 |
unique_responses = []
|
105 |
for response in responses:
|
106 |
-
normalized_response = remove_duplicates(response)
|
107 |
if normalized_response not in seen:
|
108 |
seen.add(normalized_response)
|
109 |
-
unique_responses.append(
|
110 |
return unique_responses
|
111 |
|
112 |
def select_best_response(responses):
|
113 |
print("Filtrando respuestas...")
|
114 |
responses = remove_repetitive_responses(responses)
|
115 |
-
responses = [remove_duplicates(response) for response in responses]
|
116 |
unique_responses = list(set(responses))
|
117 |
coherent_responses = filter_by_coherence(unique_responses)
|
118 |
best_response = filter_by_similarity(coherent_responses)
|
119 |
return best_response
|
120 |
|
121 |
def filter_by_coherence(responses):
|
122 |
-
# Ordenar respuestas por longitud y similaridad para coherencia básica
|
123 |
print("Ordenando respuestas por coherencia...")
|
124 |
responses.sort(key=len, reverse=True)
|
125 |
return responses
|
126 |
|
127 |
def filter_by_similarity(responses):
|
128 |
-
# Seleccionar la respuesta más coherente y única
|
129 |
print("Filtrando respuestas por similitud...")
|
130 |
responses.sort(key=len, reverse=True)
|
131 |
best_response = responses[0]
|
@@ -136,9 +129,9 @@ def filter_by_similarity(responses):
|
|
136 |
break
|
137 |
return best_response
|
138 |
|
139 |
-
def worker_function(
|
140 |
-
print(f"Generando respuesta con el modelo {
|
141 |
-
response = generate_chat_response(request,
|
142 |
return response
|
143 |
|
144 |
@app.post("/generate_chat")
|
@@ -152,11 +145,11 @@ async def generate_chat(request: ChatRequest):
|
|
152 |
num_models = len(global_data['models'])
|
153 |
|
154 |
with ThreadPoolExecutor(max_workers=num_models) as executor:
|
155 |
-
futures = [executor.submit(worker_function,
|
156 |
for future in tqdm(as_completed(futures), total=num_models, desc="Generando respuestas", unit="modelo"):
|
157 |
try:
|
158 |
response = future.result()
|
159 |
-
responses.append(response
|
160 |
except Exception as exc:
|
161 |
print(f"Error en la generación de respuesta: {exc}")
|
162 |
|
|
|
21 |
|
22 |
# Configuración de los modelos
|
23 |
model_configs = [
|
24 |
+
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
|
25 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
|
26 |
+
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
|
27 |
+
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
|
28 |
+
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
|
29 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
|
30 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
|
31 |
+
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
|
32 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"}
|
33 |
]
|
34 |
|
35 |
# Clase para gestionar modelos
|
|
|
38 |
self.models = []
|
39 |
|
40 |
def load_model(self, model_config):
|
41 |
+
print(f"Cargando modelo: {model_config['name']}...")
|
42 |
+
return {"model": Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename']), "name": model_config['name']}
|
43 |
|
44 |
def load_all_models(self):
|
45 |
print("Iniciando carga de modelos...")
|
|
|
50 |
try:
|
51 |
model = future.result()
|
52 |
models.append(model)
|
53 |
+
print(f"Modelo cargado exitosamente: {model['name']}")
|
54 |
except Exception as e:
|
55 |
print(f"Error al cargar el modelo: {e}")
|
56 |
print("Todos los modelos han sido cargados.")
|
|
|
68 |
temperature: float = 0.7
|
69 |
|
70 |
# Función para generar respuestas de chat
|
71 |
+
def generate_chat_response(request, model_data):
|
72 |
try:
|
73 |
user_input = normalize_input(request.message)
|
74 |
+
llm = model_data['model']
|
75 |
response = llm.create_chat_completion(
|
76 |
messages=[{"role": "user", "content": user_input}],
|
77 |
top_k=request.top_k,
|
|
|
79 |
temperature=request.temperature
|
80 |
)
|
81 |
reply = response['choices'][0]['message']['content']
|
82 |
+
return {"response": reply, "literal": user_input, "model_name": model_data['name']}
|
83 |
except Exception as e:
|
84 |
+
return {"response": f"Error: {str(e)}", "literal": user_input, "model_name": model_data['name']}
|
85 |
|
86 |
def normalize_input(input_text):
|
87 |
return input_text.strip()
|
88 |
|
89 |
def remove_duplicates(text):
|
|
|
90 |
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
|
91 |
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
|
|
|
|
|
92 |
text = text.replace('[/INST]', '')
|
|
|
|
|
93 |
lines = text.split('\n')
|
94 |
unique_lines = list(dict.fromkeys(lines))
|
95 |
return '\n'.join(unique_lines).strip()
|
96 |
|
97 |
def remove_repetitive_responses(responses):
|
|
|
98 |
seen = set()
|
99 |
unique_responses = []
|
100 |
for response in responses:
|
101 |
+
normalized_response = remove_duplicates(response['response'])
|
102 |
if normalized_response not in seen:
|
103 |
seen.add(normalized_response)
|
104 |
+
unique_responses.append(response)
|
105 |
return unique_responses
|
106 |
|
107 |
def select_best_response(responses):
|
108 |
print("Filtrando respuestas...")
|
109 |
responses = remove_repetitive_responses(responses)
|
110 |
+
responses = [remove_duplicates(response['response']) for response in responses]
|
111 |
unique_responses = list(set(responses))
|
112 |
coherent_responses = filter_by_coherence(unique_responses)
|
113 |
best_response = filter_by_similarity(coherent_responses)
|
114 |
return best_response
|
115 |
|
116 |
def filter_by_coherence(responses):
|
|
|
117 |
print("Ordenando respuestas por coherencia...")
|
118 |
responses.sort(key=len, reverse=True)
|
119 |
return responses
|
120 |
|
121 |
def filter_by_similarity(responses):
|
|
|
122 |
print("Filtrando respuestas por similitud...")
|
123 |
responses.sort(key=len, reverse=True)
|
124 |
best_response = responses[0]
|
|
|
129 |
break
|
130 |
return best_response
|
131 |
|
132 |
+
def worker_function(model_data, request):
|
133 |
+
print(f"Generando respuesta con el modelo: {model_data['name']}...")
|
134 |
+
response = generate_chat_response(request, model_data)
|
135 |
return response
|
136 |
|
137 |
@app.post("/generate_chat")
|
|
|
145 |
num_models = len(global_data['models'])
|
146 |
|
147 |
with ThreadPoolExecutor(max_workers=num_models) as executor:
|
148 |
+
futures = [executor.submit(worker_function, model_data, request) for model_data in global_data['models']]
|
149 |
for future in tqdm(as_completed(futures), total=num_models, desc="Generando respuestas", unit="modelo"):
|
150 |
try:
|
151 |
response = future.result()
|
152 |
+
responses.append(response)
|
153 |
except Exception as exc:
|
154 |
print(f"Error en la generación de respuesta: {exc}")
|
155 |
|