Uhhy commited on
Commit
b212c94
1 Parent(s): 425fdb4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +77 -0
app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, HTTPException
2
+ from pydantic import BaseModel
3
+ from llama_cpp import Llama
4
+ from concurrent.futures import ProcessPoolExecutor
5
+ import uvicorn
6
+ from dotenv import load_dotenv
7
+ from difflib import SequenceMatcher
8
+
9
+ load_dotenv()
10
+
11
+ app = FastAPI()
12
+
13
+ models = [
14
+ {"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf"},
15
+ {"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf"},
16
+ {"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf"},
17
+ {"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf"},
18
+ ]
19
+
20
+ llms = []
21
+ for model in models:
22
+ llm = Llama.from_pretrained(repo_id=model['repo_id'], filename=model['filename'])
23
+ llms.append(llm)
24
+
25
+ class ChatRequest(BaseModel):
26
+ message: str
27
+ top_k: int = 50
28
+ top_p: float = 0.95
29
+ temperature: float = 0.7
30
+
31
+ def generate_chat_response(request, llm):
32
+ try:
33
+ user_input = request.message
34
+ response = llm.create_chat_completion(
35
+ messages=[{"role": "user", "content": user_input}],
36
+ top_k=request.top_k,
37
+ top_p=request.top_p,
38
+ temperature=request.temperature
39
+ )
40
+ reply = response['choices'][0]['message']['content']
41
+ return reply
42
+ except Exception as e:
43
+ return f"Error: {str(e)}"
44
+
45
+ def select_best_response(responses, request):
46
+ coherent_responses = filter_by_coherence(responses, request)
47
+ best_response = filter_by_similarity(coherent_responses)
48
+ return best_response
49
+
50
+ def filter_by_coherence(responses, request):
51
+ return responses
52
+
53
+ def filter_by_similarity(responses):
54
+ responses.sort(key=len, reverse=True)
55
+ best_response = responses[0]
56
+ for i in range(1, len(responses)):
57
+ ratio = SequenceMatcher(None, best_response, responses[i]).ratio()
58
+ if ratio < 0.9:
59
+ best_response = responses[i]
60
+ break
61
+ return best_response
62
+
63
+ @app.post("/generate_chat")
64
+ async def generate_chat(request: ChatRequest):
65
+ with ProcessPoolExecutor() as executor:
66
+ futures = [executor.submit(generate_chat_response, request, llm) for llm in llms]
67
+ responses = [future.result() for future in futures]
68
+
69
+ if any("Error" in response for response in responses):
70
+ error_response = next(response for response in responses if "Error" in response)
71
+ raise HTTPException(status_code=500, detail=error_response)
72
+
73
+ best_response = select_best_response(responses, request)
74
+ return {"response": best_response}
75
+
76
+ if __name__ == "__main__":
77
+ uvicorn.run(app, host="0.0.0.0", port=7860)