Spaces:
Runtime error
Runtime error
Jacob Jaroya
commited on
Commit
β’
5900ee7
1
Parent(s):
7da0cb3
commit app update
Browse files
app.py
CHANGED
@@ -5,85 +5,70 @@ from transformers import AutoModelForSequenceClassification,AutoTokenizer, AutoC
|
|
5 |
import numpy as np
|
6 |
#convert logits to probabilities
|
7 |
from scipy.special import softmax
|
|
|
8 |
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
#import the model
|
13 |
-
tokenizer = AutoTokenizer.from_pretrained('bert-base-cased')
|
14 |
-
|
15 |
-
model_path = f"UholoDala/tweet_sentiments_analysis"
|
16 |
-
config = AutoConfig.from_pretrained(model_path)
|
17 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
18 |
#Set the page configs
|
19 |
st.set_page_config(page_title='Sentiments Analysis',page_icon='π',layout='wide')
|
20 |
|
21 |
#welcome Animation
|
22 |
com.iframe("https://embed.lottiefiles.com/animation/149093")
|
23 |
-
st.markdown(
|
|
|
24 |
|
25 |
#Create a form to take user inputs
|
26 |
with st.form(key='tweet',clear_on_submit=True):
|
|
|
27 |
text=st.text_area('Copy and paste a tweet or type one',placeholder='I find it quite amusing how people ignore the effects of not taking the vaccine')
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
#create columns to show outputs
|
31 |
col1,col2,col3=st.columns(3)
|
32 |
-
col1.write('<h2 style="font-size: 24px;">Sentiment Emoji</h2>',
|
33 |
-
col2.write('<h2 style="font-size: 24px;">How this user feels about the vaccine</h2>',
|
34 |
-
col3.write('<h2 style="font-size: 24px;">Confidence of this prediction</h2>',
|
35 |
-
|
36 |
|
37 |
if submit:
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
#change label id
|
58 |
-
config.id2label = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'}
|
59 |
-
|
60 |
-
text = preprocess(text)
|
61 |
-
|
62 |
-
# PyTorch-based models
|
63 |
-
encoded_input = tokenizer(text, return_tensors='pt')
|
64 |
-
output = model(**encoded_input)
|
65 |
-
scores = output[0][0].detach().numpy()
|
66 |
-
scores = softmax(scores)
|
67 |
-
|
68 |
-
#Process scores
|
69 |
-
ranking = np.argsort(scores)
|
70 |
-
ranking = ranking[::-1]
|
71 |
-
l = config.id2label[ranking[0]]
|
72 |
-
s = scores[ranking[0]]
|
73 |
-
|
74 |
-
#output
|
75 |
-
if l=='NEGATIVE':
|
76 |
with col1:
|
77 |
com.iframe("https://embed.lottiefiles.com/animation/125694")
|
78 |
-
col2.write('
|
79 |
-
col3.write(f'{
|
80 |
-
elif
|
81 |
with col1:
|
82 |
com.iframe("https://embed.lottiefiles.com/animation/148485")
|
83 |
-
col2.write('
|
84 |
-
col3.write(f'{
|
85 |
else:
|
86 |
with col1:
|
87 |
com.iframe("https://embed.lottiefiles.com/animation/136052")
|
88 |
-
col2.write('
|
89 |
-
col3.write(f'{
|
|
|
5 |
import numpy as np
|
6 |
#convert logits to probabilities
|
7 |
from scipy.special import softmax
|
8 |
+
from transformers import pipeline
|
9 |
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
#Set the page configs
|
12 |
st.set_page_config(page_title='Sentiments Analysis',page_icon='π',layout='wide')
|
13 |
|
14 |
#welcome Animation
|
15 |
com.iframe("https://embed.lottiefiles.com/animation/149093")
|
16 |
+
st.markdown("<h1 style='text-align: center'> Covid Vaccine Tweet Sentiments </h1>",unsafe_allow_html=True)
|
17 |
+
st.write("<h2 style='font-size: 24px;'> These models were trained to detect how a user feels about the covid vaccines based on their tweets(text) </h2>",unsafe_allow_html=True)
|
18 |
|
19 |
#Create a form to take user inputs
|
20 |
with st.form(key='tweet',clear_on_submit=True):
|
21 |
+
#input text
|
22 |
text=st.text_area('Copy and paste a tweet or type one',placeholder='I find it quite amusing how people ignore the effects of not taking the vaccine')
|
23 |
+
#Set examples
|
24 |
+
alt_text=st.selectbox("Can't Type? Select an Example below",('I hate the vaccines','Vaccines made from dead human tissues','Take the vaccines or regret the consequences','Covid is a Hoax','Making the vaccines is a huge step forward for humanity. Just take them'))
|
25 |
+
#Select a model
|
26 |
+
models={'Bert':'UholoDala/tweet_sentiments_analysis_bert',
|
27 |
+
'Distilbert':'UholoDala/tweet_sentiments_analysis_distilbert',
|
28 |
+
'Roberta':'UholoDala/tweet_sentiments_analysis_roberta'}
|
29 |
+
model=st.selectbox('Which model would you want to Use?',('Bert','Distilbert','Roberta'))
|
30 |
+
#Submit
|
31 |
+
submit=st.form_submit_button('Predict','Continue processing input')
|
32 |
+
|
33 |
+
selected_model=models[model]
|
34 |
+
|
35 |
|
36 |
#create columns to show outputs
|
37 |
col1,col2,col3=st.columns(3)
|
38 |
+
col1.write('<h2 style="font-size: 24px;"> Sentiment Emoji </h2>',unsafe_allow_html=True)
|
39 |
+
col2.write('<h2 style="font-size: 24px;"> How this user feels about the vaccine </h2>',unsafe_allow_html=True)
|
40 |
+
col3.write('<h2 style="font-size: 24px;"> Confidence of this prediction </h2>',unsafe_allow_html=True)
|
|
|
41 |
|
42 |
if submit:
|
43 |
+
#Check text
|
44 |
+
if text=="":
|
45 |
+
text=alt_text
|
46 |
+
st.success(f"input text is set to '{text}'")
|
47 |
+
else:
|
48 |
+
st.success('Text received',icon='β
')
|
49 |
+
|
50 |
+
#import the model
|
51 |
+
pipe=pipeline(model=selected_model)
|
52 |
+
|
53 |
+
#pass text to model
|
54 |
+
output=pipe(text)
|
55 |
+
output_dict=output[0]
|
56 |
+
lable=output_dict['label']
|
57 |
+
score=output_dict['score']
|
58 |
|
59 |
+
#output
|
60 |
+
if lable=='NEGATIVE' or lable=='LABEL_0':
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
with col1:
|
62 |
com.iframe("https://embed.lottiefiles.com/animation/125694")
|
63 |
+
col2.write('NEGATIVE')
|
64 |
+
col3.write(f'{score:.2%}')
|
65 |
+
elif lable=='POSITIVE'or lable=='LABEL_2':
|
66 |
with col1:
|
67 |
com.iframe("https://embed.lottiefiles.com/animation/148485")
|
68 |
+
col2.write('POSITIVE')
|
69 |
+
col3.write(f'{score:.2%}')
|
70 |
else:
|
71 |
with col1:
|
72 |
com.iframe("https://embed.lottiefiles.com/animation/136052")
|
73 |
+
col2.write('NEUTRAL')
|
74 |
+
col3.write(f'{score:.2%}')
|