Spaces:
Sleeping
Sleeping
from collections.abc import Sequence | |
from abc import ABC, abstractmethod | |
import torch | |
from PIL.Image import Image | |
class FeatureExtractor(ABC): | |
def encode_image(self, img_list: Sequence[Image]) -> torch.Tensor: | |
""" | |
Encode the input images and return the corresponding embeddings. | |
Args: | |
img_list: A list of PIL.Image.Image objects. | |
Returns: | |
The embeddings of the input images. The shape should be (len(img_list), embedding_dim). | |
""" | |
raise NotImplementedError | |
def encode_text(self, text_list: Sequence[str]) -> torch.Tensor: | |
""" | |
Encode the input text data and return the corresponding embeddings. | |
Args: | |
text_list: A list of strings. | |
Returns: | |
The embeddings of the input text data. The shape should be (len(text_list), embedding_dim). | |
""" | |
raise NotImplementedError | |
def encode_3D(self, pc_tensor: torch.Tensor) -> torch.Tensor: | |
""" | |
Encode the input 3D point cloud and return the corresponding embeddings. | |
Args: | |
pc_tensor: A tensor of shape (B, N, 3 + 3). | |
Returns: | |
The embeddings of the input 3D point cloud. The shape should be (B, embedding_dim). | |
""" | |
raise NotImplementedError | |
def encode_query(self, queries: Sequence[str]) -> torch.Tensor: | |
"""Encode the queries and return the corresponding embeddings. | |
Args: | |
queries: A list of strings. | |
Returns: | |
The embeddings of the input text data. The shape should be (len(input_text), embedding_dim). | |
""" | |
raise NotImplementedError |