yuanze1024 commited on
Commit
d89efd0
1 Parent(s): ff678a2

change the user in dockerfile

Browse files
Dockerfile CHANGED
@@ -3,8 +3,13 @@ FROM nvcr.io/nvidia/pytorch:23.08-py3
3
  LABEL maintainer="yuanze"
4
  LABEL email="[email protected]"
5
 
 
 
 
6
  WORKDIR /code
7
 
 
 
8
  # Install webp support
9
  RUN apt update && apt install libwebp-dev -y
10
 
@@ -24,6 +29,6 @@ COPY ./change_setup.txt /code/Pointnet2_PyTorch/pointnet2_ops_lib/setup.py
24
  RUN cd Pointnet2_PyTorch/pointnet2_ops_lib \
25
  && pip install .
26
 
27
- COPY . .
28
 
29
  CMD ["python", "app.py"]
 
3
  LABEL maintainer="yuanze"
4
  LABEL email="[email protected]"
5
 
6
+ RUN useradd -m -u 1000 user
7
+ USER user
8
+
9
  WORKDIR /code
10
 
11
+ RUN chown -R user:user /code
12
+
13
  # Install webp support
14
  RUN apt update && apt install libwebp-dev -y
15
 
 
29
  RUN cd Pointnet2_PyTorch/pointnet2_ops_lib \
30
  && pip install .
31
 
32
+ COPY --chown=user:user . /code
33
 
34
  CMD ["python", "app.py"]
app.py CHANGED
@@ -10,13 +10,14 @@ from feature_extractors.uni3d_embedding_encoder import Uni3dEmbeddingEncoder
10
  MAX_BATCH_SIZE = 16
11
  MAX_QUEUE_SIZE = 10
12
  MAX_K_RETRIEVAL = 20
 
13
 
14
- encoder = Uni3dEmbeddingEncoder()
15
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
16
  source_id_list = torch.load("data/source_id_list.pt")
17
  source_to_id = {source_id: i for i, source_id in enumerate(source_id_list)}
18
- dataset = load_dataset("VAST-AI/LD-T3D", name=f"rendered_imgs_diag_above", split="base")
19
- relation = load_dataset("VAST-AI/LD-T3D", split="full")
20
 
21
  @functools.lru_cache()
22
  def get_embedding(option, modality, angle=None):
 
10
  MAX_BATCH_SIZE = 16
11
  MAX_QUEUE_SIZE = 10
12
  MAX_K_RETRIEVAL = 20
13
+ cache_dir = "./.cache"
14
 
15
+ encoder = Uni3dEmbeddingEncoder(cache_dir)
16
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17
  source_id_list = torch.load("data/source_id_list.pt")
18
  source_to_id = {source_id: i for i, source_id in enumerate(source_id_list)}
19
+ dataset = load_dataset("VAST-AI/LD-T3D", name=f"rendered_imgs_diag_above", split="base", cache_dir=cache_dir)
20
+ relation = load_dataset("VAST-AI/LD-T3D", split="full", cache_dir=cache_dir)
21
 
22
  @functools.lru_cache()
23
  def get_embedding(option, modality, angle=None):
feature_extractors/uni3d_embedding_encoder.py CHANGED
@@ -279,17 +279,23 @@ def create_uni3d(uni3d_path):
279
  return model
280
 
281
  class Uni3dEmbeddingEncoder(FeatureExtractor):
282
- def __init__(self, cache_dir=None, **kwargs) -> None:
283
  bpe_path = "utils/bpe_simple_vocab_16e6.txt.gz"
284
- if cache_dir is None:
285
- clip_path = hf_hub_download("timm/eva02_enormous_patch14_plus_clip_224.laion2b_s9b_b144k", "open_clip_pytorch_model.bin")
286
- else:
287
- clip_path = os.path.join(cache_dir, "Uni3D", "open_clip_pytorch_model.bin")
 
 
 
288
  hf_hub_download("timm/eva02_enormous_patch14_plus_clip_224.laion2b_s9b_b144k", "open_clip_pytorch_model.bin",
289
- cache_dir=cache_dir, local_dir=cache_dir + os.sep + "Uni3D")
290
 
291
  self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
292
  self.tokenizer = SimpleTokenizer(bpe_path)
 
 
 
293
  self.clip_model, _, self.preprocess = open_clip.create_model_and_transforms(model_name="EVA02-E-14-plus", pretrained=clip_path)
294
  self.clip_model.to(self.device)
295
 
 
279
  return model
280
 
281
  class Uni3dEmbeddingEncoder(FeatureExtractor):
282
+ def __init__(self, cache_dir, **kwargs) -> None:
283
  bpe_path = "utils/bpe_simple_vocab_16e6.txt.gz"
284
+ # uni3d_path = os.path.join(cache_dir, "Uni3D", "modelzoo", "uni3d-g", "model.pt") # concat the subfolder as hf_hub_download will put it here
285
+ clip_path = os.path.join(cache_dir, "Uni3D", "open_clip_pytorch_model.bin")
286
+
287
+ # if not os.path.exists(uni3d_path):
288
+ # hf_hub_download("BAAI/Uni3D", "model.pt", subfolder="modelzoo/uni3d-g", cache_dir=cache_dir,
289
+ # local_dir=cache_dir + os.sep + "Uni3D")
290
+ if not os.path.exists(clip_path):
291
  hf_hub_download("timm/eva02_enormous_patch14_plus_clip_224.laion2b_s9b_b144k", "open_clip_pytorch_model.bin",
292
+ cache_dir=cache_dir, local_dir=cache_dir + os.sep + "Uni3D")
293
 
294
  self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
295
  self.tokenizer = SimpleTokenizer(bpe_path)
296
+ # self.model = create_uni3d(uni3d_path)
297
+ # self.model.eval()
298
+ # self.model.to(self.device)
299
  self.clip_model, _, self.preprocess = open_clip.create_model_and_transforms(model_name="EVA02-E-14-plus", pretrained=clip_path)
300
  self.clip_model.to(self.device)
301