Vasudevakrishna
commited on
Commit
•
fd8d20e
1
Parent(s):
48ccb79
App added.
Browse files- app.py +130 -0
- examples/Image_1.jpg +0 -0
- examples/Image_2.jpg +0 -0
- examples/Image_3.jpg +0 -0
- examples/Images_4.jpg +0 -0
app.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import whisperx
|
3 |
+
import gradio as gr
|
4 |
+
from peft import PeftModel
|
5 |
+
from configs import get_config_phase2
|
6 |
+
from transformers import AutoTokenizer, AutoProcessor, CLIPVisionModel, AutoModelForCausalLM
|
7 |
+
|
8 |
+
config = get_config_phase2()
|
9 |
+
|
10 |
+
clip_model = CLIPVisionModel.from_pretrained(config.get("clip_model_name"))
|
11 |
+
|
12 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
13 |
+
config.get("phi2_model_name"),
|
14 |
+
low_cpu_mem_usage=True,
|
15 |
+
return_dict=True,
|
16 |
+
torch_dtype=torch.float32,
|
17 |
+
trust_remote_code=True
|
18 |
+
)
|
19 |
+
|
20 |
+
|
21 |
+
ckpts = "ckpts/Qlora_adaptor/"
|
22 |
+
phi2_model = PeftModel.from_pretrained(base_model, ckpts)
|
23 |
+
phi2_model = phi2_model.merge_and_unload().to(config.get("device"))
|
24 |
+
|
25 |
+
projection_layer = torch.nn.Linear(config.get("clip_embed"), config.get("phi_embed"))
|
26 |
+
projection_layer.load_state_dict(torch.load('./ckpts/model_phase2.pth', map_location=config.get("device")))
|
27 |
+
|
28 |
+
# tokenizer
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained(config.get("phi2_model_name"), trust_remote_code=True)
|
30 |
+
processor = AutoProcessor.from_pretrained(config.get("clip_model_name"), trust_remote_code=True)
|
31 |
+
|
32 |
+
audio_model = whisperx.load_model('tiny', 'cpu', compute_type="float32")
|
33 |
+
|
34 |
+
|
35 |
+
def generate_answers(img=None, aud = None, q = None, max_tokens = 30):
|
36 |
+
batch_size = 1
|
37 |
+
start_iq = tokenizer.encode("<iQ>")
|
38 |
+
end_iq = tokenizer.encode("</iQ>")
|
39 |
+
start_iq_embeds = torch.tensor(start_iq).repeat(batch_size, 1)
|
40 |
+
end_iq_embeds = torch.tensor(end_iq).repeat(batch_size, 1)
|
41 |
+
start_iq_embeds = phi2_model.model.embed_tokens(start_iq_embeds.to(config.get("device")))
|
42 |
+
end_iq_embeds = phi2_model.model.embed_tokens(end_iq_embeds.to(config.get("device")))
|
43 |
+
|
44 |
+
inputs_embeddings = []
|
45 |
+
inputs_embeddings.append(start_iq_embeds)
|
46 |
+
|
47 |
+
predicted_caption = torch.full((batch_size, max_tokens), 50256, dtype=torch.long, device=config.get('device'))
|
48 |
+
|
49 |
+
if img is not None:
|
50 |
+
images = processor(images=img, return_tensors="pt")['pixel_values'].to(config.get("device"))
|
51 |
+
images = {'pixel_values': images.to(config.get("device"))}
|
52 |
+
clip_outputs = clip_model(**images)
|
53 |
+
# remove cls token
|
54 |
+
images = clip_outputs.last_hidden_state[:, 1:, :]
|
55 |
+
image_embeddings = projection_layer(images).to(torch.float32)
|
56 |
+
inputs_embeddings.append(image_embeddings)
|
57 |
+
|
58 |
+
if aud is not None:
|
59 |
+
trans = audio_model.transcribe(aud)
|
60 |
+
audio_res = ""
|
61 |
+
for seg in trans['segments']:
|
62 |
+
audio_res += seg['text']
|
63 |
+
audio_res = audio_res.strip()
|
64 |
+
audio_tokens = tokenizer(audio_res,return_tensors="pt", return_attention_mask=False)['input_ids']
|
65 |
+
audio_embeds = phi2_model.model.embed_tokens(audio_tokens.to(config.get("device")))
|
66 |
+
inputs_embeddings.append(audio_embeds)
|
67 |
+
|
68 |
+
if q!='':
|
69 |
+
ques = tokenizer(q, return_tensors="pt", return_attention_mask=False)['input_ids']
|
70 |
+
q_embeds = phi2_model.model.embed_tokens(ques.to(config.get("device")))
|
71 |
+
inputs_embeddings.append(q_embeds)
|
72 |
+
|
73 |
+
inputs_embeddings.append(end_iq_embeds)
|
74 |
+
# Combine embeddings
|
75 |
+
combined_embeds = torch.cat(inputs_embeddings, dim=1)
|
76 |
+
predicted_caption = phi2_model.generate(inputs_embeds=combined_embeds,
|
77 |
+
max_new_tokens=max_tokens,
|
78 |
+
return_dict_in_generate = True)
|
79 |
+
|
80 |
+
# for pos in range(max_tokens - 1):
|
81 |
+
# model_output_logits = phi2_model.forward(inputs_embeds = combined_embeds)['logits']
|
82 |
+
# print(model_output_logits.shape)
|
83 |
+
# predicted_word_token_logits = model_output_logits[:, -1, :].unsqueeze(1)
|
84 |
+
# predicted_word_token = torch.argmax(predicted_word_token_logits, dim = -1)
|
85 |
+
# predicted_caption[:, pos] = predicted_word_token.view(1,-1).to('cpu')
|
86 |
+
# print(predicted_caption)
|
87 |
+
# next_token_embeds = phi2_model.model.embed_tokens(predicted_word_token)
|
88 |
+
# combined_embeds = torch.cat([combined_embeds, next_token_embeds], dim=1)
|
89 |
+
# print("combined_embeds", combined_embeds.shape)
|
90 |
+
# predicted_captions_decoded = tokenizer.batch_decode(predicted_caption,ignore_index = 50256)[0]
|
91 |
+
predicted_captions_decoded =tokenizer.batch_decode(predicted_caption.sequences[:, 1:])[0]
|
92 |
+
predicted_captions_decoded = predicted_captions_decoded.replace("<|endoftext|>","")
|
93 |
+
return predicted_captions_decoded
|
94 |
+
|
95 |
+
# List of examples (image, audio, question, max_tokens)
|
96 |
+
examples = [
|
97 |
+
["./examples/Image_1.jpg", None, "Explain image?", 20],
|
98 |
+
["./examples/Image_2.jpg", None, "How many animals are there in image?", 10],
|
99 |
+
["./examples/Image_3.jpg", None, "What is in the image?", 20],
|
100 |
+
["./examples/Image_4.jpg", None, "What represents this Image?", 20],
|
101 |
+
]
|
102 |
+
|
103 |
+
with gr.Blocks() as demo:
|
104 |
+
|
105 |
+
gr.Markdown(
|
106 |
+
"""
|
107 |
+
# MultiModelLLM
|
108 |
+
Multimodel GPT with inputs as Image, Audio, Text with output as Text.
|
109 |
+
"""
|
110 |
+
)
|
111 |
+
|
112 |
+
with gr.Row():
|
113 |
+
with gr.Column():
|
114 |
+
image = gr.Image(label='Image', type="pil", value=None)
|
115 |
+
audio_q = gr.Audio(label="Audio Question", value=None, sources=['microphone', 'upload'], type='filepath')
|
116 |
+
question = gr.Text(label ='Question?', value=None)
|
117 |
+
max_tokens = gr.Slider(1, 50, value=10, step=1, label="Max tokens")
|
118 |
+
with gr.Row():
|
119 |
+
answer = gr.Text(label ='Answer')
|
120 |
+
with gr.Row():
|
121 |
+
submit = gr.Button("Submit")
|
122 |
+
submit.click(generate_answers, inputs=[image, audio_q, question, max_tokens], outputs=[answer])
|
123 |
+
clear_btn = gr.ClearButton([image, audio_q, question, max_tokens, answer])
|
124 |
+
# Add examples
|
125 |
+
gr.Examples(examples=examples, inputs=[image, audio_q, question, max_tokens], outputs=answer)
|
126 |
+
|
127 |
+
|
128 |
+
if __name__ == "__main__":
|
129 |
+
|
130 |
+
demo.launch(share=True, debug=True)
|
examples/Image_1.jpg
ADDED
examples/Image_2.jpg
ADDED
examples/Image_3.jpg
ADDED
examples/Images_4.jpg
ADDED