Spaces:
Running
on
A10G
Running
on
A10G
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import os | |
import sys | |
sys.path.append(os.path.split(sys.path[0])[0]) | |
import json | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
from torch.nn import functional as F | |
import einops | |
from diffusers.configuration_utils import ConfigMixin, register_to_config | |
from diffusers.models.modeling_utils import ModelMixin | |
from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
from diffusers.utils import BaseOutput, logging | |
try: | |
from .unet_blocks import ( | |
CrossAttnDownBlock3D, | |
CrossAttnUpBlock3D, | |
DownBlock3D, | |
UNetMidBlock3DCrossAttn, | |
UpBlock3D, | |
get_down_block, | |
get_up_block, | |
) | |
from .resnet import InflatedConv3d | |
from .temporal_module import TemporalModule3D, EmptyTemporalModule3D | |
except: | |
from unet_blocks import ( | |
CrossAttnDownBlock3D, | |
CrossAttnUpBlock3D, | |
DownBlock3D, | |
UNetMidBlock3DCrossAttn, | |
UpBlock3D, | |
get_down_block, | |
get_up_block, | |
) | |
from resnet import InflatedConv3d | |
from temporal_module import TemporalModule3D, EmptyTemporalModule3D | |
from rotary_embedding_torch import RotaryEmbedding | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
def zero_module(module): | |
for p in module.parameters(): | |
nn.init.zeros_(p) | |
return module | |
class RelativePositionBias(nn.Module): | |
def __init__( | |
self, | |
heads=8, | |
num_buckets=32, | |
max_distance=128, | |
): | |
super().__init__() | |
self.num_buckets = num_buckets | |
self.max_distance = max_distance | |
self.relative_attention_bias = nn.Embedding(num_buckets, heads) | |
def _relative_position_bucket(relative_position, num_buckets=32, max_distance=128): | |
ret = 0 | |
n = -relative_position | |
num_buckets //= 2 | |
ret += (n < 0).long() * num_buckets | |
n = torch.abs(n) | |
max_exact = num_buckets // 2 | |
is_small = n < max_exact | |
val_if_large = max_exact + ( | |
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) | |
).long() | |
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) | |
ret += torch.where(is_small, n, val_if_large) | |
return ret | |
def forward(self, n, device): | |
q_pos = torch.arange(n, dtype = torch.long, device = device) | |
k_pos = torch.arange(n, dtype = torch.long, device = device) | |
rel_pos = einops.rearrange(k_pos, 'j -> 1 j') - einops.rearrange(q_pos, 'i -> i 1') | |
rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance) | |
values = self.relative_attention_bias(rp_bucket) | |
return einops.rearrange(values, 'i j h -> h i j') # num_heads, num_frames, num_frames | |
class UNet3DConditionOutput(BaseOutput): | |
sample: torch.FloatTensor | |
class UNet3DVSRModel(ModelMixin, ConfigMixin): | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
### Temporal Module Additional Kwargs ### | |
down_temporal_idx = (0,1,2), | |
mid_temporal = False, | |
up_temporal_idx = (0,1,2), | |
video_condition = True, | |
temporal_module_config = None, | |
sample_size: Optional[int] = None, # 80 | |
in_channels: int = 7, | |
out_channels: int = 4, | |
center_input_sample: bool = False, | |
max_noise_level: int = 350, | |
flip_sin_to_cos: bool = True, | |
freq_shift: int = 0, | |
attention_head_dim: Union[int, Tuple[int]] = 8, | |
block_out_channels: Tuple[int] = ( | |
256, | |
512, | |
512, | |
1024 | |
), | |
down_block_types: Tuple[str] = ( | |
"DownBlock3D", | |
"CrossAttnDownBlock3D", | |
"CrossAttnDownBlock3D", | |
"CrossAttnDownBlock3D" | |
), | |
mid_block_type: str = "UNetMidBlock3DCrossAttn", | |
up_block_types: Tuple[str] = ( | |
"CrossAttnUpBlock3D", | |
"CrossAttnUpBlock3D", | |
"CrossAttnUpBlock3D", | |
"UpBlock3D" | |
), | |
only_cross_attention: Union[bool, Tuple[bool]] = ( | |
True, | |
True, | |
True, | |
False | |
), | |
layers_per_block: int = 2, | |
downsample_padding: int = 1, | |
mid_block_scale_factor: float = 1, | |
act_fn: str = "silu", | |
norm_num_groups: int = 32, | |
norm_eps: float = 1e-5, | |
cross_attention_dim: int = 1024, | |
dual_cross_attention: bool = False, | |
use_linear_projection: bool = True, | |
class_embed_type: Optional[str] = None, | |
num_class_embeds: Optional[int] = 1000, | |
upcast_attention: bool = False, | |
resnet_time_scale_shift: str = "default", | |
use_first_frame: bool = False, | |
use_relative_position: bool = False, | |
): | |
super().__init__() | |
self.sample_size = sample_size | |
time_embed_dim = block_out_channels[0] * 4 | |
# input | |
self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=1) | |
# time | |
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift) | |
timestep_input_dim = block_out_channels[0] | |
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
# class embedding | |
if class_embed_type is None and num_class_embeds is not None: | |
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) # VSR for noise level | |
elif class_embed_type == "timestep": | |
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim) | |
elif class_embed_type == "identity": | |
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim) | |
else: | |
self.class_embedding = None | |
self.down_blocks = nn.ModuleList([]) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
self.video_condition = video_condition | |
# Temporal Modules | |
self.down_temporal_blocks = nn.ModuleList([]) | |
self.mid_temporal_block = None | |
self.up_temporal_blocks = nn.ModuleList([]) | |
if isinstance(only_cross_attention, bool): | |
only_cross_attention = [only_cross_attention] * len(down_block_types) | |
if isinstance(attention_head_dim, int): | |
attention_head_dim = (attention_head_dim,) * len(down_block_types) | |
self.temporal_rotary_emb = RotaryEmbedding(32) | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=layers_per_block, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
temb_channels=time_embed_dim, | |
add_downsample=not is_final_block, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attention_head_dim[i], | |
downsample_padding=downsample_padding, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
use_first_frame=use_first_frame, | |
use_relative_position=use_relative_position, | |
rotary_emb=self.temporal_rotary_emb, | |
) | |
self.down_blocks.append(down_block) | |
# Down Sample Temporal Modules | |
down_temporal_block = TemporalModule3D( | |
in_channels=output_channel, | |
out_channels=output_channel, | |
temb_channels=time_embed_dim, | |
video_condition=video_condition, | |
**temporal_module_config, | |
) if i in down_temporal_idx else EmptyTemporalModule3D() | |
self.down_temporal_blocks.append(down_temporal_block) | |
# mid | |
if mid_block_type == "UNetMidBlock3DCrossAttn": | |
self.mid_block = UNetMidBlock3DCrossAttn( | |
in_channels=block_out_channels[-1], | |
temb_channels=time_embed_dim, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
output_scale_factor=mid_block_scale_factor, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=attention_head_dim[-1], | |
resnet_groups=norm_num_groups, | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
upcast_attention=upcast_attention, | |
use_first_frame=use_first_frame, | |
use_relative_position=use_relative_position, | |
rotary_emb=self.temporal_rotary_emb, | |
) | |
else: | |
raise ValueError(f"unknown mid_block_type : {mid_block_type}") | |
self.mid_temporal_block = TemporalModule3D( | |
in_channels=block_out_channels[-1], | |
out_channels=block_out_channels[-1], | |
temb_channels=time_embed_dim, | |
video_condition=video_condition, | |
**temporal_module_config, | |
) if mid_temporal else EmptyTemporalModule3D() | |
# count how many layers upsample the videos | |
self.num_upsamplers = 0 | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
reversed_attention_head_dim = list(reversed(attention_head_dim)) | |
only_cross_attention = list(reversed(only_cross_attention)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
is_final_block = i == len(block_out_channels) - 1 | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)] | |
# add upsample block for all BUT final layer | |
if not is_final_block: | |
add_upsample = True | |
self.num_upsamplers += 1 | |
else: | |
add_upsample = False | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=layers_per_block + 1, | |
in_channels=input_channel, | |
out_channels=output_channel, | |
prev_output_channel=prev_output_channel, | |
temb_channels=time_embed_dim, | |
add_upsample=add_upsample, | |
resnet_eps=norm_eps, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
attn_num_head_channels=reversed_attention_head_dim[i], | |
dual_cross_attention=dual_cross_attention, | |
use_linear_projection=use_linear_projection, | |
only_cross_attention=only_cross_attention[i], | |
upcast_attention=upcast_attention, | |
resnet_time_scale_shift=resnet_time_scale_shift, | |
use_first_frame=use_first_frame, | |
use_relative_position=use_relative_position, | |
rotary_emb=self.temporal_rotary_emb, | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
up_temporal_block = TemporalModule3D( | |
in_channels=output_channel, | |
out_channels=output_channel, | |
temb_channels=time_embed_dim, | |
video_condition=video_condition, | |
**temporal_module_config, | |
) if i in up_temporal_idx else EmptyTemporalModule3D() | |
self.up_temporal_blocks.append(up_temporal_block) | |
# out | |
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps) | |
self.conv_act = nn.SiLU() | |
self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1) | |
def set_attention_slice(self, slice_size): | |
r""" | |
Enable sliced attention computation. | |
When this option is enabled, the attention module will split the input tensor in slices, to compute attention | |
in several steps. This is useful to save some memory in exchange for a small speed decrease. | |
Args: | |
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`): | |
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If | |
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is | |
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` | |
must be a multiple of `slice_size`. | |
""" | |
sliceable_head_dims = [] | |
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module): | |
if hasattr(module, "set_attention_slice"): | |
sliceable_head_dims.append(module.sliceable_head_dim) | |
for child in module.children(): | |
fn_recursive_retrieve_slicable_dims(child) | |
# retrieve number of attention layers | |
for module in self.children(): | |
fn_recursive_retrieve_slicable_dims(module) | |
num_slicable_layers = len(sliceable_head_dims) | |
if slice_size == "auto": | |
# half the attention head size is usually a good trade-off between | |
# speed and memory | |
slice_size = [dim // 2 for dim in sliceable_head_dims] | |
elif slice_size == "max": | |
# make smallest slice possible | |
slice_size = num_slicable_layers * [1] | |
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size | |
if len(slice_size) != len(sliceable_head_dims): | |
raise ValueError( | |
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different" | |
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}." | |
) | |
for i in range(len(slice_size)): | |
size = slice_size[i] | |
dim = sliceable_head_dims[i] | |
if size is not None and size > dim: | |
raise ValueError(f"size {size} has to be smaller or equal to {dim}.") | |
# Recursively walk through all the children. | |
# Any children which exposes the set_attention_slice method | |
# gets the message | |
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]): | |
if hasattr(module, "set_attention_slice"): | |
module.set_attention_slice(slice_size.pop()) | |
for child in module.children(): | |
fn_recursive_set_attention_slice(child, slice_size) | |
reversed_slice_size = list(reversed(slice_size)) | |
for module in self.children(): | |
fn_recursive_set_attention_slice(module, reversed_slice_size) | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)): | |
module.gradient_checkpointing = value | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
timestep: Union[torch.Tensor, float, int], | |
low_res: torch.FloatTensor, | |
# encoder_hidden_states: torch.Tensor, | |
encoder_hidden_states = None, | |
class_labels: Optional[torch.Tensor] = 20, | |
low_res_clean: Optional[torch.FloatTensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
return_dict: bool = True, | |
): # -> Union[UNet3DConditionOutput, Tuple]: | |
r""" | |
Args: | |
sample (`torch.FloatTensor`): (batch, channel, seq_length, height, width) noisy inputs tensor | |
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps | |
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states | |
class_labels: noise level | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. | |
Returns: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`: | |
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When | |
returning a tuple, the first element is the sample tensor. | |
""" | |
# By default samples have to be AT least a multiple of the overall upsampling factor. | |
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears). | |
# However, the upsampling interpolation output size can be forced to fit any upsampling size | |
# on the fly if necessary. | |
default_overall_up_factor = 2**self.num_upsamplers | |
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor` | |
forward_upsample_size = False | |
upsample_size = None | |
if self.video_condition: | |
low_res_dict = {} | |
low_res_dict[low_res.shape[-1]] = low_res | |
for s in [1/2., 1/4., 1/8.]: | |
low_res_ds = F.interpolate(low_res, scale_factor=(1, s, s), mode='area') | |
low_res_dict[low_res_ds.shape[-1]] = low_res_ds | |
else: | |
low_res_dict = None | |
sample = torch.cat([sample, low_res], dim=1) # concat on C: 4+3=7 | |
#print(f'==============={sample.shape}================') | |
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]): | |
logger.info("Forward upsample size to force interpolation output size.") | |
forward_upsample_size = True | |
# prepare attention_mask | |
if attention_mask is not None: | |
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0 | |
attention_mask = attention_mask.unsqueeze(1) | |
# center input if necessary | |
if self.config.center_input_sample: | |
sample = 2 * sample - 1.0 | |
# time | |
timesteps = timestep | |
if not torch.is_tensor(timesteps): | |
# This would be a good case for the `match` statement (Python 3.10+) | |
is_mps = sample.device.type == "mps" | |
if isinstance(timestep, float): | |
dtype = torch.float32 if is_mps else torch.float64 | |
else: | |
dtype = torch.int32 if is_mps else torch.int64 | |
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device) | |
elif len(timesteps.shape) == 0: | |
timesteps = timesteps[None].to(sample.device) | |
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML | |
timesteps = timesteps.expand(sample.shape[0]) | |
t_emb = self.time_proj(timesteps) | |
# timesteps does not contain any weights and will always return f32 tensors | |
# but time_embedding might actually be running in fp16. so we need to cast here. | |
# there might be better ways to encapsulate this. | |
t_emb = t_emb.to(dtype=self.dtype) | |
emb = self.time_embedding(t_emb) | |
if self.class_embedding is not None: | |
if class_labels is None: | |
raise ValueError("class_labels should be provided when num_class_embeds > 0") | |
# check noise level | |
if torch.any(class_labels > self.config.max_noise_level): | |
raise ValueError(f"`noise_level` has to be <= {self.config.max_noise_level} but is {class_labels}") | |
if self.config.class_embed_type == "timestep": | |
class_labels = self.time_proj(class_labels) | |
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype) | |
emb = emb + class_emb | |
# pre-process | |
sample = self.conv_in(sample) | |
# down | |
down_block_res_samples = (sample,) | |
for downsample_block, down_temporal_block in zip(self.down_blocks, self.down_temporal_blocks): | |
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention: | |
sample, res_samples = downsample_block( | |
hidden_states=sample, | |
temb=emb, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=attention_mask, | |
) | |
else: | |
sample, res_samples = downsample_block(hidden_states=sample, temb=emb) | |
down_block_res_samples += res_samples | |
# 1. temporal modeling during down sample | |
sample = down_temporal_block( | |
hidden_states=sample, | |
condition_video=low_res_dict, | |
encoder_hidden_states=encoder_hidden_states, | |
timesteps=timesteps, | |
temb=emb, | |
) | |
# mid | |
sample = self.mid_block( | |
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask | |
) | |
# 2. temporal modeling at mid block | |
sample = self.mid_temporal_block( | |
hidden_states=sample, | |
condition_video=low_res_dict, | |
encoder_hidden_states=encoder_hidden_states, | |
timesteps=timesteps, | |
temb=emb, | |
) | |
# up | |
for i, (upsample_block, up_temporal_block) in enumerate(zip(self.up_blocks, self.up_temporal_blocks)): | |
is_final_block = i == len(self.up_blocks) - 1 | |
res_samples = down_block_res_samples[-len(upsample_block.resnets) :] | |
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)] | |
# if we have not reached the final block and need to forward the | |
# upsample size, we do it here | |
if not is_final_block and forward_upsample_size: | |
upsample_size = down_block_res_samples[-1].shape[2:] | |
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention: | |
sample = upsample_block( | |
hidden_states=sample, | |
temb=emb, | |
res_hidden_states_tuple=res_samples, | |
encoder_hidden_states=encoder_hidden_states, | |
upsample_size=upsample_size, | |
attention_mask=attention_mask, | |
) | |
else: | |
sample = upsample_block( | |
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size | |
) | |
# 3. temporal modeling during up sample | |
sample = up_temporal_block( | |
hidden_states=sample, | |
condition_video=low_res_dict, | |
encoder_hidden_states=encoder_hidden_states, | |
timesteps=timesteps, | |
temb=emb, | |
) | |
# post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample) | |
# print(sample.shape) | |
if not return_dict: | |
return (sample,) | |
return UNet3DConditionOutput(sample=sample) | |
def forward_with_cfg(self, | |
x, | |
t, | |
low_res, | |
encoder_hidden_states = None, | |
class_labels: Optional[torch.Tensor] = 20, | |
cfg_scale=4.0, | |
use_fp16=False): | |
""" | |
Forward, but also batches the unconditional forward pass for classifier-free guidance. | |
""" | |
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb | |
half = x[: len(x) // 2] | |
combined = torch.cat([half, half], dim=0) | |
if use_fp16: | |
combined = combined.to(dtype=torch.float16) | |
model_out = self.forward(combined, t, low_res, encoder_hidden_states, class_labels).sample | |
# For exact reproducibility reasons, we apply classifier-free guidance on only | |
# three channels by default. The standard approach to cfg applies it to all channels. | |
# This can be done by uncommenting the following line and commenting-out the line following that. | |
eps, rest = model_out[:, :4], model_out[:, 4:] | |
# eps, rest = model_out[:, :3], model_out[:, 3:] # b c f h w | |
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0) | |
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps) | |
eps = torch.cat([half_eps, half_eps], dim=0) | |
return torch.cat([eps, rest], dim=1) | |
def from_pretrained_2d(cls, config_path, pretrained_model_path): | |
if not os.path.isfile(config_path): | |
raise RuntimeError(f"{config_path} does not exist") | |
with open(config_path, "r") as f: | |
config = json.load(f) | |
config["_class_name"] = cls.__name__ | |
freeze_pretrained_2d_upsampler = config["freeze_pretrained_2d_upsampler"] | |
model = cls.from_config(config) | |
model_file = os.path.join(pretrained_model_path) | |
if not os.path.isfile(model_file): | |
raise RuntimeError(f"{model_file} does not exist") | |
state_dict = torch.load(model_file, map_location="cpu") | |
for k, v in model.state_dict().items(): | |
if 'temporal' in k: | |
print(f'New layers: {k}') | |
state_dict.update({k: v}) | |
model.load_state_dict(state_dict, strict=True) | |
if freeze_pretrained_2d_upsampler: | |
print("Freeze pretrained 2d upsampler!") | |
for k, v in model.named_parameters(): | |
if not 'temporal' in k: | |
v.requires_grad = False | |
return model | |
if __name__ == '__main__': | |
import torch | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
config_path = "./configs/unet_3d_config.json" | |
# pretrained_model_path = "./pretrained_models/unet_diffusion_pytorch_model.bin" | |
# unet = UNet3DVSRModel.from_pretrained_2d(config_path, pretrained_model_path).to(device) | |