LaVie / vsr /models /unet.py
Zhouyan248's picture
Upload 86 files
26555ee
raw
history blame
27 kB
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import os
import sys
sys.path.append(os.path.split(sys.path[0])[0])
import json
import math
import torch
import torch.nn as nn
import torch.utils.checkpoint
from torch.nn import functional as F
import einops
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.modeling_utils import ModelMixin
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.utils import BaseOutput, logging
try:
from .unet_blocks import (
CrossAttnDownBlock3D,
CrossAttnUpBlock3D,
DownBlock3D,
UNetMidBlock3DCrossAttn,
UpBlock3D,
get_down_block,
get_up_block,
)
from .resnet import InflatedConv3d
from .temporal_module import TemporalModule3D, EmptyTemporalModule3D
except:
from unet_blocks import (
CrossAttnDownBlock3D,
CrossAttnUpBlock3D,
DownBlock3D,
UNetMidBlock3DCrossAttn,
UpBlock3D,
get_down_block,
get_up_block,
)
from resnet import InflatedConv3d
from temporal_module import TemporalModule3D, EmptyTemporalModule3D
from rotary_embedding_torch import RotaryEmbedding
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
def zero_module(module):
for p in module.parameters():
nn.init.zeros_(p)
return module
class RelativePositionBias(nn.Module):
def __init__(
self,
heads=8,
num_buckets=32,
max_distance=128,
):
super().__init__()
self.num_buckets = num_buckets
self.max_distance = max_distance
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
@staticmethod
def _relative_position_bucket(relative_position, num_buckets=32, max_distance=128):
ret = 0
n = -relative_position
num_buckets //= 2
ret += (n < 0).long() * num_buckets
n = torch.abs(n)
max_exact = num_buckets // 2
is_small = n < max_exact
val_if_large = max_exact + (
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
).long()
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
ret += torch.where(is_small, n, val_if_large)
return ret
def forward(self, n, device):
q_pos = torch.arange(n, dtype = torch.long, device = device)
k_pos = torch.arange(n, dtype = torch.long, device = device)
rel_pos = einops.rearrange(k_pos, 'j -> 1 j') - einops.rearrange(q_pos, 'i -> i 1')
rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance)
values = self.relative_attention_bias(rp_bucket)
return einops.rearrange(values, 'i j h -> h i j') # num_heads, num_frames, num_frames
@dataclass
class UNet3DConditionOutput(BaseOutput):
sample: torch.FloatTensor
class UNet3DVSRModel(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
### Temporal Module Additional Kwargs ###
down_temporal_idx = (0,1,2),
mid_temporal = False,
up_temporal_idx = (0,1,2),
video_condition = True,
temporal_module_config = None,
sample_size: Optional[int] = None, # 80
in_channels: int = 7,
out_channels: int = 4,
center_input_sample: bool = False,
max_noise_level: int = 350,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
attention_head_dim: Union[int, Tuple[int]] = 8,
block_out_channels: Tuple[int] = (
256,
512,
512,
1024
),
down_block_types: Tuple[str] = (
"DownBlock3D",
"CrossAttnDownBlock3D",
"CrossAttnDownBlock3D",
"CrossAttnDownBlock3D"
),
mid_block_type: str = "UNetMidBlock3DCrossAttn",
up_block_types: Tuple[str] = (
"CrossAttnUpBlock3D",
"CrossAttnUpBlock3D",
"CrossAttnUpBlock3D",
"UpBlock3D"
),
only_cross_attention: Union[bool, Tuple[bool]] = (
True,
True,
True,
False
),
layers_per_block: int = 2,
downsample_padding: int = 1,
mid_block_scale_factor: float = 1,
act_fn: str = "silu",
norm_num_groups: int = 32,
norm_eps: float = 1e-5,
cross_attention_dim: int = 1024,
dual_cross_attention: bool = False,
use_linear_projection: bool = True,
class_embed_type: Optional[str] = None,
num_class_embeds: Optional[int] = 1000,
upcast_attention: bool = False,
resnet_time_scale_shift: str = "default",
use_first_frame: bool = False,
use_relative_position: bool = False,
):
super().__init__()
self.sample_size = sample_size
time_embed_dim = block_out_channels[0] * 4
# input
self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=1)
# time
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
timestep_input_dim = block_out_channels[0]
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
# class embedding
if class_embed_type is None and num_class_embeds is not None:
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim) # VSR for noise level
elif class_embed_type == "timestep":
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
elif class_embed_type == "identity":
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
else:
self.class_embedding = None
self.down_blocks = nn.ModuleList([])
self.mid_block = None
self.up_blocks = nn.ModuleList([])
self.video_condition = video_condition
# Temporal Modules
self.down_temporal_blocks = nn.ModuleList([])
self.mid_temporal_block = None
self.up_temporal_blocks = nn.ModuleList([])
if isinstance(only_cross_attention, bool):
only_cross_attention = [only_cross_attention] * len(down_block_types)
if isinstance(attention_head_dim, int):
attention_head_dim = (attention_head_dim,) * len(down_block_types)
self.temporal_rotary_emb = RotaryEmbedding(32)
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=attention_head_dim[i],
downsample_padding=downsample_padding,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
use_first_frame=use_first_frame,
use_relative_position=use_relative_position,
rotary_emb=self.temporal_rotary_emb,
)
self.down_blocks.append(down_block)
# Down Sample Temporal Modules
down_temporal_block = TemporalModule3D(
in_channels=output_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
video_condition=video_condition,
**temporal_module_config,
) if i in down_temporal_idx else EmptyTemporalModule3D()
self.down_temporal_blocks.append(down_temporal_block)
# mid
if mid_block_type == "UNetMidBlock3DCrossAttn":
self.mid_block = UNetMidBlock3DCrossAttn(
in_channels=block_out_channels[-1],
temb_channels=time_embed_dim,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_time_scale_shift=resnet_time_scale_shift,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=attention_head_dim[-1],
resnet_groups=norm_num_groups,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
use_first_frame=use_first_frame,
use_relative_position=use_relative_position,
rotary_emb=self.temporal_rotary_emb,
)
else:
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
self.mid_temporal_block = TemporalModule3D(
in_channels=block_out_channels[-1],
out_channels=block_out_channels[-1],
temb_channels=time_embed_dim,
video_condition=video_condition,
**temporal_module_config,
) if mid_temporal else EmptyTemporalModule3D()
# count how many layers upsample the videos
self.num_upsamplers = 0
# up
reversed_block_out_channels = list(reversed(block_out_channels))
reversed_attention_head_dim = list(reversed(attention_head_dim))
only_cross_attention = list(reversed(only_cross_attention))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
is_final_block = i == len(block_out_channels) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
# add upsample block for all BUT final layer
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
up_block = get_up_block(
up_block_type,
num_layers=layers_per_block + 1,
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=time_embed_dim,
add_upsample=add_upsample,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=reversed_attention_head_dim[i],
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
use_first_frame=use_first_frame,
use_relative_position=use_relative_position,
rotary_emb=self.temporal_rotary_emb,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
up_temporal_block = TemporalModule3D(
in_channels=output_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
video_condition=video_condition,
**temporal_module_config,
) if i in up_temporal_idx else EmptyTemporalModule3D()
self.up_temporal_blocks.append(up_temporal_block)
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
self.conv_act = nn.SiLU()
self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
def set_attention_slice(self, slice_size):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
must be a multiple of `slice_size`.
"""
sliceable_head_dims = []
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
if hasattr(module, "set_attention_slice"):
sliceable_head_dims.append(module.sliceable_head_dim)
for child in module.children():
fn_recursive_retrieve_slicable_dims(child)
# retrieve number of attention layers
for module in self.children():
fn_recursive_retrieve_slicable_dims(module)
num_slicable_layers = len(sliceable_head_dims)
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = [dim // 2 for dim in sliceable_head_dims]
elif slice_size == "max":
# make smallest slice possible
slice_size = num_slicable_layers * [1]
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
if len(slice_size) != len(sliceable_head_dims):
raise ValueError(
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
)
for i in range(len(slice_size)):
size = slice_size[i]
dim = sliceable_head_dims[i]
if size is not None and size > dim:
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
# Recursively walk through all the children.
# Any children which exposes the set_attention_slice method
# gets the message
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
if hasattr(module, "set_attention_slice"):
module.set_attention_slice(slice_size.pop())
for child in module.children():
fn_recursive_set_attention_slice(child, slice_size)
reversed_slice_size = list(reversed(slice_size))
for module in self.children():
fn_recursive_set_attention_slice(module, reversed_slice_size)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
module.gradient_checkpointing = value
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
low_res: torch.FloatTensor,
# encoder_hidden_states: torch.Tensor,
encoder_hidden_states = None,
class_labels: Optional[torch.Tensor] = 20,
low_res_clean: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
return_dict: bool = True,
): # -> Union[UNet3DConditionOutput, Tuple]:
r"""
Args:
sample (`torch.FloatTensor`): (batch, channel, seq_length, height, width) noisy inputs tensor
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
class_labels: noise level
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
Returns:
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2**self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
if self.video_condition:
low_res_dict = {}
low_res_dict[low_res.shape[-1]] = low_res
for s in [1/2., 1/4., 1/8.]:
low_res_ds = F.interpolate(low_res, scale_factor=(1, s, s), mode='area')
low_res_dict[low_res_ds.shape[-1]] = low_res_ds
else:
low_res_dict = None
sample = torch.cat([sample, low_res], dim=1) # concat on C: 4+3=7
#print(f'==============={sample.shape}================')
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
logger.info("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# prepare attention_mask
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# center input if necessary
if self.config.center_input_sample:
sample = 2 * sample - 1.0
# time
timesteps = timestep
if not torch.is_tensor(timesteps):
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=self.dtype)
emb = self.time_embedding(t_emb)
if self.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when num_class_embeds > 0")
# check noise level
if torch.any(class_labels > self.config.max_noise_level):
raise ValueError(f"`noise_level` has to be <= {self.config.max_noise_level} but is {class_labels}")
if self.config.class_embed_type == "timestep":
class_labels = self.time_proj(class_labels)
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
emb = emb + class_emb
# pre-process
sample = self.conv_in(sample)
# down
down_block_res_samples = (sample,)
for downsample_block, down_temporal_block in zip(self.down_blocks, self.down_temporal_blocks):
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# 1. temporal modeling during down sample
sample = down_temporal_block(
hidden_states=sample,
condition_video=low_res_dict,
encoder_hidden_states=encoder_hidden_states,
timesteps=timesteps,
temb=emb,
)
# mid
sample = self.mid_block(
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
)
# 2. temporal modeling at mid block
sample = self.mid_temporal_block(
hidden_states=sample,
condition_video=low_res_dict,
encoder_hidden_states=encoder_hidden_states,
timesteps=timesteps,
temb=emb,
)
# up
for i, (upsample_block, up_temporal_block) in enumerate(zip(self.up_blocks, self.up_temporal_blocks)):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
upsample_size=upsample_size,
attention_mask=attention_mask,
)
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
)
# 3. temporal modeling during up sample
sample = up_temporal_block(
hidden_states=sample,
condition_video=low_res_dict,
encoder_hidden_states=encoder_hidden_states,
timesteps=timesteps,
temb=emb,
)
# post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
# print(sample.shape)
if not return_dict:
return (sample,)
return UNet3DConditionOutput(sample=sample)
def forward_with_cfg(self,
x,
t,
low_res,
encoder_hidden_states = None,
class_labels: Optional[torch.Tensor] = 20,
cfg_scale=4.0,
use_fp16=False):
"""
Forward, but also batches the unconditional forward pass for classifier-free guidance.
"""
# https://github.com/openai/glide-text2im/blob/main/notebooks/text2im.ipynb
half = x[: len(x) // 2]
combined = torch.cat([half, half], dim=0)
if use_fp16:
combined = combined.to(dtype=torch.float16)
model_out = self.forward(combined, t, low_res, encoder_hidden_states, class_labels).sample
# For exact reproducibility reasons, we apply classifier-free guidance on only
# three channels by default. The standard approach to cfg applies it to all channels.
# This can be done by uncommenting the following line and commenting-out the line following that.
eps, rest = model_out[:, :4], model_out[:, 4:]
# eps, rest = model_out[:, :3], model_out[:, 3:] # b c f h w
cond_eps, uncond_eps = torch.split(eps, len(eps) // 2, dim=0)
half_eps = uncond_eps + cfg_scale * (cond_eps - uncond_eps)
eps = torch.cat([half_eps, half_eps], dim=0)
return torch.cat([eps, rest], dim=1)
@classmethod
def from_pretrained_2d(cls, config_path, pretrained_model_path):
if not os.path.isfile(config_path):
raise RuntimeError(f"{config_path} does not exist")
with open(config_path, "r") as f:
config = json.load(f)
config["_class_name"] = cls.__name__
freeze_pretrained_2d_upsampler = config["freeze_pretrained_2d_upsampler"]
model = cls.from_config(config)
model_file = os.path.join(pretrained_model_path)
if not os.path.isfile(model_file):
raise RuntimeError(f"{model_file} does not exist")
state_dict = torch.load(model_file, map_location="cpu")
for k, v in model.state_dict().items():
if 'temporal' in k:
print(f'New layers: {k}')
state_dict.update({k: v})
model.load_state_dict(state_dict, strict=True)
if freeze_pretrained_2d_upsampler:
print("Freeze pretrained 2d upsampler!")
for k, v in model.named_parameters():
if not 'temporal' in k:
v.requires_grad = False
return model
if __name__ == '__main__':
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
config_path = "./configs/unet_3d_config.json"
# pretrained_model_path = "./pretrained_models/unet_diffusion_pytorch_model.bin"
# unet = UNet3DVSRModel.from_pretrained_2d(config_path, pretrained_model_path).to(device)