Spaces:
Running
on
A10G
Running
on
A10G
import gradio as gr | |
from text_to_video import model_t2v_fun,setup_seed | |
from omegaconf import OmegaConf | |
import torch | |
import imageio | |
import os | |
import cv2 | |
import pandas as pd | |
import torchvision | |
import random | |
from huggingface_hub import snapshot_download | |
config_path = "./base/configs/sample.yaml" | |
args = OmegaConf.load("./base/configs/sample.yaml") | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# ------- get model --------------- | |
# model_t2V = model_t2v_fun(args) | |
# model_t2V.to(device) | |
# if device == "cuda": | |
# model_t2V.enable_xformers_memory_efficient_attention() | |
css = """ | |
h1 { | |
text-align: center; | |
} | |
#component-0 { | |
max-width: 730px; | |
margin: auto; | |
} | |
""" | |
sd_path = args.pretrained_path + "/stable-diffusion-v1-4" | |
unet = get_models(args, sd_path).to(device, dtype=torch.float16) | |
state_dict = find_model("./pretrained_models/lavie_base.pt") | |
unet.load_state_dict(state_dict) | |
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae", torch_dtype=torch.float16).to(device) | |
tokenizer_one = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer") | |
text_encoder_one = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device) # huge | |
unet.eval() | |
vae.eval() | |
text_encoder_one.eval() | |
def infer(prompt, seed_inp, ddim_steps,cfg, infer_type): | |
if seed_inp!=-1: | |
setup_seed(seed_inp) | |
else: | |
seed_inp = random.choice(range(10000000)) | |
setup_seed(seed_inp) | |
if infer_type == 'ddim': | |
scheduler = DDIMScheduler.from_pretrained(sd_path, | |
subfolder="scheduler", | |
beta_start=args.beta_start, | |
beta_end=args.beta_end, | |
beta_schedule=args.beta_schedule) | |
elif infer_type == 'eulerdiscrete': | |
scheduler = EulerDiscreteScheduler.from_pretrained(sd_path, | |
subfolder="scheduler", | |
beta_start=args.beta_start, | |
beta_end=args.beta_end, | |
beta_schedule=args.beta_schedule) | |
elif infer_type == 'ddpm': | |
scheduler = DDPMScheduler.from_pretrained(sd_path, | |
subfolder="scheduler", | |
beta_start=args.beta_start, | |
beta_end=args.beta_end, | |
beta_schedule=args.beta_schedule) | |
model = VideoGenPipeline(vae=vae, text_encoder=text_encoder_one, tokenizer=tokenizer_one, scheduler=scheduler, unet=unet) | |
model.to(device) | |
if device == "cuda": | |
model.enable_xformers_memory_efficient_attention() | |
videos = model(prompt, video_length=16, height = 320, width= 512, num_inference_steps=ddim_steps, guidance_scale=cfg).video | |
print(videos[0].shape) | |
if not os.path.exists(args.output_folder): | |
os.mkdir(args.output_folder) | |
torchvision.io.write_video(args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4', videos[0], fps=8) | |
return args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4' | |
# def clean(): | |
# return gr.Video.update(value=None) | |
title = """ | |
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> | |
<div | |
style=" | |
display: inline-flex; | |
align-items: center; | |
gap: 0.8rem; | |
font-size: 1.75rem; | |
" | |
> | |
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;"> | |
Intern路Vchitect (Text-to-Video) | |
</h1> | |
</div> | |
<p style="margin-bottom: 10px; font-size: 94%"> | |
Apply Intern路Vchitect to generate a video | |
</p> | |
</div> | |
""" | |
with gr.Blocks(css='style.css') as demo: | |
gr.Markdown("<font color=red size=10><center>LaVie: Text-to-Video generation</center></font>") | |
with gr.Column(): | |
with gr.Row(elem_id="col-container"): | |
# inputs = [prompt, seed_inp, ddim_steps] | |
# outputs = [video_out] | |
with gr.Column(): | |
prompt = gr.Textbox(value="a corgi walking in the park at sunrise, oil painting style", label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in", min_width=200, lines=2) | |
infer_type = gr.Dropdown(['ddpm','ddim','eulerdiscrete'], label='infer_type',value='ddim') | |
ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=50, step=1) | |
seed_inp = gr.Slider(value=-1,label="seed (for random generation, use -1)",show_label=True,minimum=-1,maximum=2147483647) | |
cfg = gr.Number(label="guidance_scale",value=7.5) | |
# seed_inp = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, value=400, elem_id="seed-in") | |
with gr.Column(): | |
submit_btn = gr.Button("Generate video") | |
# clean_btn = gr.Button("Clean video") | |
video_out = gr.Video(label="Video result", elem_id="video-output") | |
inputs = [prompt, seed_inp, ddim_steps, cfg, infer_type] | |
outputs = [video_out] | |
ex = gr.Examples( | |
examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7,'ddim'], | |
['a cut teddy bear reading a book in the park, oil painting style, high quality',700,50,7,'ddim'], | |
['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7,'ddim'], | |
['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7,'ddim'], | |
['a teddy bear walking in the park, oil painting style, high quality',400,50,7,'ddim'], | |
['a teddy bear walking on the street, 2k, high quality',100,50,7,'ddim'], | |
['a panda taking a selfie, 2k, high quality',400,50,7,'ddim'], | |
['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7,'ddim'], | |
['jungle river at sunset, ultra quality',400,50,7,'ddim'], | |
['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7,'ddim'], | |
['A steam train moving on a mountainside by Vincent van Gogh',230,50,7,'ddim'], | |
['a confused grizzly bear in calculus class',1000,50,7,'ddim']], | |
fn = infer, | |
inputs=[prompt, seed_inp, ddim_steps,cfg,infer_type], | |
outputs=[video_out], | |
cache_examples=False, | |
) | |
ex.dataset.headers = [""] | |
clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False) | |
submit_btn.click(infer, inputs, outputs) | |
# share_button.click(None, [], [], _js=share_js) | |
demo.queue(max_size=12).launch() | |