LaVie / base /app.py
YaohuiW's picture
Disable Embedding (#4)
d9bc186
import gradio as gr
from text_to_video import model_t2v_fun,setup_seed
from omegaconf import OmegaConf
import torch
import imageio
import os
import cv2
import pandas as pd
import torchvision
import random
from models import get_models
from pipelines.pipeline_videogen import VideoGenPipeline
from download import find_model
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, PNDMScheduler, EulerDiscreteScheduler
from diffusers.models import AutoencoderKL
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection
config_path = "./base/configs/sample.yaml"
args = OmegaConf.load("./base/configs/sample.yaml")
device = "cuda" if torch.cuda.is_available() else "cpu"
css = """
h1 {
text-align: center;
}
#component-0 {
max-width: 730px;
margin: auto;
}
"""
sd_path = args.pretrained_path
unet = get_models(args, sd_path).to(device, dtype=torch.float16)
state_dict = find_model("./pretrained_models/lavie_base.pt")
unet.load_state_dict(state_dict)
vae = AutoencoderKL.from_pretrained(sd_path, subfolder="vae", torch_dtype=torch.float16).to(device)
tokenizer_one = CLIPTokenizer.from_pretrained(sd_path, subfolder="tokenizer")
text_encoder_one = CLIPTextModel.from_pretrained(sd_path, subfolder="text_encoder", torch_dtype=torch.float16).to(device) # huge
unet.eval()
vae.eval()
text_encoder_one.eval()
def infer(prompt, seed_inp, ddim_steps,cfg, infer_type):
if seed_inp!=-1:
setup_seed(seed_inp)
else:
seed_inp = random.choice(range(10000000))
setup_seed(seed_inp)
if infer_type == 'ddim':
scheduler = DDIMScheduler.from_pretrained(sd_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule)
elif infer_type == 'eulerdiscrete':
scheduler = EulerDiscreteScheduler.from_pretrained(sd_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule)
elif infer_type == 'ddpm':
scheduler = DDPMScheduler.from_pretrained(sd_path,
subfolder="scheduler",
beta_start=args.beta_start,
beta_end=args.beta_end,
beta_schedule=args.beta_schedule)
model = VideoGenPipeline(vae=vae, text_encoder=text_encoder_one, tokenizer=tokenizer_one, scheduler=scheduler, unet=unet)
model.to(device)
if device == "cuda":
model.enable_xformers_memory_efficient_attention()
videos = model(prompt, video_length=16, height = 320, width= 512, num_inference_steps=ddim_steps, guidance_scale=cfg).video
if not os.path.exists(args.output_folder):
os.mkdir(args.output_folder)
torchvision.io.write_video(args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4', videos[0], fps=8)
return args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4'
title = """
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex;
align-items: center;
gap: 0.8rem;
font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
Intern路Vchitect (Text-to-Video)
</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Apply Intern路Vchitect to generate a video
</p>
</div>
"""
with gr.Blocks(css='style.css') as demo:
gr.Markdown("<font color=red size=10><center>LaVie: Text-to-Video generation</center></font>")
gr.Markdown(
"""<div style="text-align:center">
[<a href="https://arxiv.org/abs/2309.15103">Arxiv Report</a>] | [<a href="https://vchitect.github.io/LaVie-project/">Project Page</a>] | [<a href="https://github.com/Vchitect/LaVie">Github</a>]</div>
"""
)
with gr.Column():
with gr.Row(elem_id="col-container"):
with gr.Column():
prompt = gr.Textbox(value="a corgi walking in the park at sunrise, oil painting style", label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in", min_width=200, lines=2)
infer_type = gr.Dropdown(['ddpm','ddim','eulerdiscrete'], label='infer_type',value='ddim')
ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=50, step=1)
seed_inp = gr.Slider(value=-1,label="seed (for random generation, use -1)",show_label=True,minimum=-1,maximum=2147483647)
cfg = gr.Number(label="guidance_scale",value=7.5)
with gr.Column():
submit_btn = gr.Button("Generate video")
video_out = gr.Video(label="Video result", elem_id="video-output")
inputs = [prompt, seed_inp, ddim_steps, cfg, infer_type]
outputs = [video_out]
ex = gr.Examples(
examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7,'ddim'],
['a cute teddy bear reading a book in the park, oil painting style, high quality',700,50,7,'ddim'],
['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7,'ddim'],
['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7,'ddim'],
['a teddy bear walking in the park, oil painting style, high quality',400,50,7,'ddim'],
['a teddy bear walking on the street, 2k, high quality',100,50,7,'ddim'],
['a panda taking a selfie, 2k, high quality',400,50,7,'ddim'],
['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7,'ddim'],
['jungle river at sunset, ultra quality',400,50,7,'ddim'],
['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7,'ddim'],
['A steam train moving on a mountainside by Vincent van Gogh',230,50,7,'ddim'],
['a confused grizzly bear in calculus class',1000,50,7,'ddim']],
fn = infer,
inputs=[prompt, seed_inp, ddim_steps,cfg,infer_type],
outputs=[video_out],
cache_examples=True,
)
ex.dataset.headers = [""]
submit_btn.click(infer, inputs, outputs)
demo.queue(max_size=12, api_open=False).launch(show_api=False)