Spaces:
Runtime error
Runtime error
VikramSingh178
commited on
Commit
•
441421d
1
Parent(s):
bb67f61
Delete Medical Diagnosis App
Browse files- Medical Diagnosis App/.streamlit/config.toml +0 -6
- Medical Diagnosis App/.vscode/settings.json +0 -4
- Medical Diagnosis App/Home.py +0 -25
- Medical Diagnosis App/brain_labels.json +0 -6
- Medical Diagnosis App/labels.json +0 -6
- Medical Diagnosis App/models/brain_model.pth +0 -3
- Medical Diagnosis App/models/eye_model.pth +0 -3
- Medical Diagnosis App/models/timm_skin_model.pth +0 -3
- Medical Diagnosis App/models/timm_xray_model.pth +0 -3
- Medical Diagnosis App/pages/Brain.py +0 -156
- Medical Diagnosis App/pages/Chest.py +0 -163
- Medical Diagnosis App/pages/Model Dashboard.py +0 -7
- Medical Diagnosis App/pages/Skin.py +0 -145
- Medical Diagnosis App/requirements.txt +0 -11
- Medical Diagnosis App/skin_labels.json +0 -10
Medical Diagnosis App/.streamlit/config.toml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
[theme]
|
2 |
-
primaryColor="#38b2ac"
|
3 |
-
backgroundColor="#1a202c"
|
4 |
-
secondaryBackgroundColor="#2d3748"
|
5 |
-
textColor="#e2e8f0"
|
6 |
-
font='monospace'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/.vscode/settings.json
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"editor.tabCompletion": "on",
|
3 |
-
"diffEditor.codeLens": true
|
4 |
-
}
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/Home.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from PIL import Image
|
3 |
-
|
4 |
-
|
5 |
-
# Add a title
|
6 |
-
st.set_page_config(page_title="Select Diagnosis", layout="centered")
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
st.title("Medical Diagnosis App")
|
11 |
-
|
12 |
-
st.markdown("")
|
13 |
-
st.markdown("<li> Currently Brain Tumors , Xrays and Skin Leison Analysis are ready for diagnosis </li>"
|
14 |
-
"<li>The Models also explain what area in the images is the cause of diagnosis </li>"
|
15 |
-
"<li>Currently the models are trained on a small dataset and will be trained on a larger dataset in the future</li>"
|
16 |
-
'<li> The Application also provides generated information on how to diagnose the disease and what should the patient do in that case</li>'
|
17 |
-
,unsafe_allow_html=True)
|
18 |
-
|
19 |
-
with st.sidebar.container():
|
20 |
-
image = Image.open("/Users/vikram/Downloads/Meditechlogo.png")
|
21 |
-
st.image(image, caption='Meditech',use_column_width=True)
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/brain_labels.json
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"0":"Glinomia",
|
3 |
-
"1": "Meningomia",
|
4 |
-
"2":"notumar",
|
5 |
-
"3": "pituary"
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/labels.json
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"0":"Covid19",
|
3 |
-
"1": "Normal",
|
4 |
-
"2":"Pneumonia",
|
5 |
-
"3": "Tuberculosis"
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/models/brain_model.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:52a7a2393337e2dedca977e4729df96b2f55579c58cbd2263922d0f8752fd866
|
3 |
-
size 79728020
|
|
|
|
|
|
|
|
Medical Diagnosis App/models/eye_model.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9e83d4f41fd93bd35208cb9a1643158ee33b781ea111105fe614e2738edb3fe7
|
3 |
-
size 27238762
|
|
|
|
|
|
|
|
Medical Diagnosis App/models/timm_skin_model.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a5163d00507a13ccd735162fd43dd35b16cbb901bc06d407a4deb1cef194a0e2
|
3 |
-
size 16408803
|
|
|
|
|
|
|
|
Medical Diagnosis App/models/timm_xray_model.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:fe8a9cda4e25a731216bb6503f36757e9ebde7251f2c1f34c1aa3489707419c4
|
3 |
-
size 93909024
|
|
|
|
|
|
|
|
Medical Diagnosis App/pages/Brain.py
DELETED
@@ -1,156 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from PIL import Image
|
3 |
-
import torch.nn as nn
|
4 |
-
import timm
|
5 |
-
import torch
|
6 |
-
import torchmetrics
|
7 |
-
from torchmetrics import F1Score,Recall,Accuracy
|
8 |
-
import torch.optim.lr_scheduler as lr_scheduler
|
9 |
-
import torchvision.models as models
|
10 |
-
import lightning.pytorch as pl
|
11 |
-
import torchvision
|
12 |
-
from lightning.pytorch.loggers import WandbLogger
|
13 |
-
import shap
|
14 |
-
import matplotlib.pyplot as plt
|
15 |
-
import json
|
16 |
-
from transformers import pipeline, set_seed
|
17 |
-
from transformers import BioGptTokenizer, BioGptForCausalLM
|
18 |
-
text_model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
|
19 |
-
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
|
20 |
-
labels_path = '/Users/vikram/Python/Medical Diagnosis App/brain_labels.json'
|
21 |
-
from captum.attr import DeepLift , visualization
|
22 |
-
|
23 |
-
with open(labels_path) as json_data:
|
24 |
-
idx_to_labels = json.load(json_data)
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
class FineTuneModel(pl.LightningModule):
|
29 |
-
def __init__(self, model_name, num_classes, learning_rate, dropout_rate,beta1,beta2,eps):
|
30 |
-
super().__init__()
|
31 |
-
self.model_name = model_name
|
32 |
-
self.num_classes = num_classes
|
33 |
-
self.learning_rate = learning_rate
|
34 |
-
self.beta1 = beta1
|
35 |
-
self.beta2 = beta2
|
36 |
-
self.eps = eps
|
37 |
-
self.dropout_rate = dropout_rate
|
38 |
-
self.model = timm.create_model(self.model_name, pretrained=True,num_classes=self.num_classes)
|
39 |
-
self.loss_fn = nn.CrossEntropyLoss()
|
40 |
-
self.f1 = F1Score(task='multiclass', num_classes=self.num_classes)
|
41 |
-
self.recall = Recall(task='multiclass', num_classes=self.num_classes)
|
42 |
-
self.accuracy = Accuracy(task='multiclass', num_classes=self.num_classes)
|
43 |
-
|
44 |
-
#for param in self.model.parameters():
|
45 |
-
#param.requires_grad = True
|
46 |
-
#self.model.classifier= nn.Sequential(nn.Dropout(p=self.dropout_rate),nn.Linear(self.model.classifier.in_features, self.num_classes))
|
47 |
-
#self.model.classifier.requires_grad = True
|
48 |
-
|
49 |
-
|
50 |
-
def forward(self, x):
|
51 |
-
return self.model(x)
|
52 |
-
|
53 |
-
def training_step(self, batch, batch_idx):
|
54 |
-
x, y = batch
|
55 |
-
y_hat = self.model(x)
|
56 |
-
loss = self.loss_fn(y_hat, y)
|
57 |
-
acc = self.accuracy(y_hat.argmax(dim=1),y)
|
58 |
-
f1 = self.f1(y_hat.argmax(dim=1),y)
|
59 |
-
recall = self.recall(y_hat.argmax(dim=1),y)
|
60 |
-
self.log('train_loss', loss,on_step=False,on_epoch=True)
|
61 |
-
self.log('train_acc', acc,on_step=False,on_epoch = True)
|
62 |
-
self.log('train_f1',f1,on_step=False,on_epoch=True)
|
63 |
-
self.log('train_recall',recall,on_step=False,on_epoch=True)
|
64 |
-
return loss
|
65 |
-
|
66 |
-
def validation_step(self, batch, batch_idx):
|
67 |
-
x, y = batch
|
68 |
-
y_hat = self.model(x)
|
69 |
-
loss = self.loss_fn(y_hat, y)
|
70 |
-
acc = self.accuracy(y_hat.argmax(dim=1),y)
|
71 |
-
f1 = self.f1(y_hat.argmax(dim=1),y)
|
72 |
-
recall = self.recall(y_hat.argmax(dim=1),y)
|
73 |
-
self.log('val_loss', loss,on_step=False,on_epoch=True)
|
74 |
-
self.log('val_acc', acc,on_step=False,on_epoch=True)
|
75 |
-
self.log('val_f1',f1,on_step=False,on_epoch=True)
|
76 |
-
self.log('val_recall',recall,on_step=False,on_epoch=True)
|
77 |
-
|
78 |
-
|
79 |
-
def configure_optimizers(self):
|
80 |
-
optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate,betas=(self.beta1,self.beta2),eps=self.eps)
|
81 |
-
scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
|
82 |
-
return {'optimizer': optimizer, 'lr_scheduler': scheduler}
|
83 |
-
|
84 |
-
|
85 |
-
#load model
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
st.markdown("<h1 style='text-align: center; '>Brain Tumor Diagnosis</h1>",unsafe_allow_html=True)
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
# Display a file uploader widget for the user to upload an image
|
97 |
-
|
98 |
-
uploaded_file = st.file_uploader("Choose an Brain MRI image file", type=["jpg", "jpeg", "png"])
|
99 |
-
|
100 |
-
# Load the uploaded image, or display emojis if no file was uploaded
|
101 |
-
with st.container():
|
102 |
-
if uploaded_file is not None:
|
103 |
-
|
104 |
-
image = Image.open(uploaded_file)
|
105 |
-
st.image(image, caption='Diagnosis', use_column_width=True)
|
106 |
-
model = timm.create_model(model_name='efficientnet_b1', pretrained=True,num_classes=4)
|
107 |
-
data_cfg = timm.data.resolve_data_config(model.pretrained_cfg)
|
108 |
-
transform = timm.data.create_transform(**data_cfg)
|
109 |
-
model_transforms = torchvision.transforms.Compose([transform])
|
110 |
-
transformed_image = model_transforms(image)
|
111 |
-
brain_model = torch.load('models/brain_model.pth')
|
112 |
-
|
113 |
-
brain_model.eval()
|
114 |
-
with torch.inference_mode():
|
115 |
-
with st.progress(100):
|
116 |
-
|
117 |
-
#class_names = ['Glinomia','Meningomia','notumar','pituary']
|
118 |
-
prediction = torch.nn.functional.softmax(brain_model(transformed_image.unsqueeze(dim=0))[0], dim=0)
|
119 |
-
prediction_score, pred_label_idx = torch.topk(prediction, 1)
|
120 |
-
pred_label_idx.squeeze_()
|
121 |
-
predicted_label = idx_to_labels[str(pred_label_idx.item())]
|
122 |
-
st.write( f'Predicted Label: {predicted_label}')
|
123 |
-
if st.button('Know More'):
|
124 |
-
generator = pipeline("text-generation",model=text_model,tokenizer=tokenizer)
|
125 |
-
input_text = f"Patient has {predicted_label} and is advised to take the following medicines:"
|
126 |
-
with st.spinner('Generating Text'):
|
127 |
-
generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)
|
128 |
-
st.markdown(generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)[0]['generated_text'])
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
else:
|
143 |
-
st.success("Please upload an image file 🧠")
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
## Model Explainibilty Dashboard using Captum
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/pages/Chest.py
DELETED
@@ -1,163 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from PIL import Image
|
3 |
-
import torch.nn as nn
|
4 |
-
import timm
|
5 |
-
import torch
|
6 |
-
import time
|
7 |
-
import torchmetrics
|
8 |
-
from torchmetrics import F1Score,Recall,Accuracy
|
9 |
-
import torch.optim.lr_scheduler as lr_scheduler
|
10 |
-
import torchvision.models as models
|
11 |
-
import lightning.pytorch as pl
|
12 |
-
import torchvision
|
13 |
-
from lightning.pytorch.loggers import WandbLogger
|
14 |
-
import captum
|
15 |
-
import matplotlib.pyplot as plt
|
16 |
-
import json
|
17 |
-
from transformers import pipeline, set_seed
|
18 |
-
from transformers import BioGptTokenizer, BioGptForCausalLM
|
19 |
-
text_model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
|
20 |
-
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
|
21 |
-
labels_path = '/Users/vikram/Python/Medical Diagnosis App/labels.json'
|
22 |
-
|
23 |
-
|
24 |
-
with open(labels_path) as json_data:
|
25 |
-
idx_to_labels = json.load(json_data)
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
class FineTuneModel(pl.LightningModule):
|
30 |
-
def __init__(self, model_name, num_classes, learning_rate, dropout_rate,beta1,beta2,eps):
|
31 |
-
super().__init__()
|
32 |
-
self.model_name = model_name
|
33 |
-
self.num_classes = num_classes
|
34 |
-
self.learning_rate = learning_rate
|
35 |
-
self.beta1 = beta1
|
36 |
-
self.beta2 = beta2
|
37 |
-
self.eps = eps
|
38 |
-
self.dropout_rate = dropout_rate
|
39 |
-
self.model = timm.create_model(self.model_name, pretrained=True,num_classes=self.num_classes)
|
40 |
-
self.loss_fn = nn.CrossEntropyLoss()
|
41 |
-
self.f1 = F1Score(task='multiclass', num_classes=self.num_classes)
|
42 |
-
self.recall = Recall(task='multiclass', num_classes=self.num_classes)
|
43 |
-
self.accuracy = Accuracy(task='multiclass', num_classes=self.num_classes)
|
44 |
-
|
45 |
-
#for param in self.model.parameters():
|
46 |
-
#param.requires_grad = True
|
47 |
-
#self.model.classifier= nn.Sequential(nn.Dropout(p=self.dropout_rate),nn.Linear(self.model.classifier.in_features, self.num_classes))
|
48 |
-
#self.model.classifier.requires_grad = True
|
49 |
-
|
50 |
-
|
51 |
-
def forward(self, x):
|
52 |
-
return self.model(x)
|
53 |
-
|
54 |
-
def training_step(self, batch, batch_idx):
|
55 |
-
x, y = batch
|
56 |
-
y_hat = self.model(x)
|
57 |
-
loss = self.loss_fn(y_hat, y)
|
58 |
-
acc = self.accuracy(y_hat.argmax(dim=1),y)
|
59 |
-
f1 = self.f1(y_hat.argmax(dim=1),y)
|
60 |
-
recall = self.recall(y_hat.argmax(dim=1),y)
|
61 |
-
self.log('train_loss', loss,on_step=False,on_epoch=True)
|
62 |
-
self.log('train_acc', acc,on_step=False,on_epoch = True)
|
63 |
-
self.log('train_f1',f1,on_step=False,on_epoch=True)
|
64 |
-
self.log('train_recall',recall,on_step=False,on_epoch=True)
|
65 |
-
return loss
|
66 |
-
|
67 |
-
def validation_step(self, batch, batch_idx):
|
68 |
-
x, y = batch
|
69 |
-
y_hat = self.model(x)
|
70 |
-
loss = self.loss_fn(y_hat, y)
|
71 |
-
acc = self.accuracy(y_hat.argmax(dim=1),y)
|
72 |
-
f1 = self.f1(y_hat.argmax(dim=1),y)
|
73 |
-
recall = self.recall(y_hat.argmax(dim=1),y)
|
74 |
-
self.log('val_loss', loss,on_step=False,on_epoch=True)
|
75 |
-
self.log('val_acc', acc,on_step=False,on_epoch=True)
|
76 |
-
self.log('val_f1',f1,on_step=False,on_epoch=True)
|
77 |
-
self.log('val_recall',recall,on_step=False,on_epoch=True)
|
78 |
-
|
79 |
-
|
80 |
-
def configure_optimizers(self):
|
81 |
-
optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate,betas=(self.beta1,self.beta2),eps=self.eps)
|
82 |
-
scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
|
83 |
-
return {'optimizer': optimizer, 'lr_scheduler': scheduler}
|
84 |
-
|
85 |
-
|
86 |
-
#load model
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
st.markdown("<h1 style='text-align: center; '>Chest Xray Diagnosis</h1>",unsafe_allow_html=True)
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
# Display a file uploader widget for the user to upload an image
|
98 |
-
uploaded_file = st.file_uploader("Choose an Chest XRay Image file", type=["jpg", "jpeg", "png"])
|
99 |
-
|
100 |
-
# Load the uploaded image, or display emojis if no file was uploaded
|
101 |
-
if uploaded_file is not None:
|
102 |
-
|
103 |
-
image = Image.open(uploaded_file)
|
104 |
-
st.image(image, caption='Diagnosis',width=224, use_column_width=True)
|
105 |
-
model = timm.create_model(model_name='efficientnet_b2', pretrained=True,num_classes=4)
|
106 |
-
data_cfg = timm.data.resolve_data_config(model.pretrained_cfg)
|
107 |
-
transform = timm.data.create_transform(**data_cfg)
|
108 |
-
model_transforms = torchvision.transforms.Compose([transform])
|
109 |
-
transformed_image = model_transforms(image)
|
110 |
-
xray_model = torch.load('models/timm_xray_model.pth')
|
111 |
-
|
112 |
-
xray_model.eval()
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
with torch.inference_mode():
|
117 |
-
with st.progress(100):
|
118 |
-
|
119 |
-
prediction = torch.nn.functional.softmax(xray_model(transformed_image.unsqueeze(dim=0))[0], dim=0)
|
120 |
-
prediction_score, pred_label_idx = torch.topk(prediction, 1)
|
121 |
-
pred_label_idx.squeeze_()
|
122 |
-
predicted_label = idx_to_labels[str(pred_label_idx.item())]
|
123 |
-
st.write( f'Predicted Label: {predicted_label}')
|
124 |
-
if st.button('Know More'):
|
125 |
-
generator = pipeline("text-generation",model=text_model,tokenizer=tokenizer)
|
126 |
-
input_text = f"Patient has {predicted_label} and is advised to take the following medicines:"
|
127 |
-
with st.spinner('Generating Text'):
|
128 |
-
generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)
|
129 |
-
st.markdown(generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)[0]['generated_text'])
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
else:
|
142 |
-
st.success("Please upload an image file ⚕️")
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/pages/Model Dashboard.py
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
st.components.v1.iframe(src = 'https://api.wandb.ai/links/vikramxd/nw5ru81j',width = 1000, height = 800,scrolling = True)
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/pages/Skin.py
DELETED
@@ -1,145 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from PIL import Image
|
3 |
-
import torch.nn as nn
|
4 |
-
import timm
|
5 |
-
import torch
|
6 |
-
import torchmetrics
|
7 |
-
from torchmetrics import F1Score,Recall,Accuracy
|
8 |
-
import torch.optim.lr_scheduler as lr_scheduler
|
9 |
-
import torchvision.models as models
|
10 |
-
import lightning.pytorch as pl
|
11 |
-
import torchvision
|
12 |
-
from lightning.pytorch.loggers import WandbLogger
|
13 |
-
import shap
|
14 |
-
import matplotlib.pyplot as plt
|
15 |
-
import json
|
16 |
-
from transformers import pipeline, set_seed
|
17 |
-
from transformers import BioGptTokenizer, BioGptForCausalLM
|
18 |
-
text_model = BioGptForCausalLM.from_pretrained("microsoft/biogpt")
|
19 |
-
tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt")
|
20 |
-
labels_path = '/Users/vikram/Python/Medical Diagnosis App/skin_labels.json'
|
21 |
-
from captum.attr import DeepLift , visualization
|
22 |
-
|
23 |
-
with open(labels_path) as json_data:
|
24 |
-
idx_to_labels = json.load(json_data)
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
class FineTuneModel(pl.LightningModule):
|
29 |
-
def __init__(self, model_name, num_classes, learning_rate, dropout_rate,beta1,beta2,eps):
|
30 |
-
super().__init__()
|
31 |
-
self.model_name = model_name
|
32 |
-
self.num_classes = num_classes
|
33 |
-
self.learning_rate = learning_rate
|
34 |
-
self.beta1 = beta1
|
35 |
-
self.beta2 = beta2
|
36 |
-
self.eps = eps
|
37 |
-
self.dropout_rate = dropout_rate
|
38 |
-
self.model = timm.create_model(self.model_name, pretrained=True,num_classes=self.num_classes)
|
39 |
-
self.loss_fn = nn.CrossEntropyLoss()
|
40 |
-
self.f1 = F1Score(task='multiclass', num_classes=self.num_classes)
|
41 |
-
self.recall = Recall(task='multiclass', num_classes=self.num_classes)
|
42 |
-
self.accuracy = Accuracy(task='multiclass', num_classes=self.num_classes)
|
43 |
-
|
44 |
-
#for param in self.model.parameters():
|
45 |
-
#param.requires_grad = True
|
46 |
-
#self.model.classifier= nn.Sequential(nn.Dropout(p=self.dropout_rate),nn.Linear(self.model.classifier.in_features, self.num_classes))
|
47 |
-
#self.model.classifier.requires_grad = True
|
48 |
-
|
49 |
-
|
50 |
-
def forward(self, x):
|
51 |
-
return self.model(x)
|
52 |
-
|
53 |
-
def training_step(self, batch, batch_idx):
|
54 |
-
x, y = batch
|
55 |
-
y_hat = self.model(x)
|
56 |
-
loss = self.loss_fn(y_hat, y)
|
57 |
-
acc = self.accuracy(y_hat.argmax(dim=1),y)
|
58 |
-
f1 = self.f1(y_hat.argmax(dim=1),y)
|
59 |
-
recall = self.recall(y_hat.argmax(dim=1),y)
|
60 |
-
self.log('train_loss', loss,on_step=False,on_epoch=True)
|
61 |
-
self.log('train_acc', acc,on_step=False,on_epoch = True)
|
62 |
-
self.log('train_f1',f1,on_step=False,on_epoch=True)
|
63 |
-
self.log('train_recall',recall,on_step=False,on_epoch=True)
|
64 |
-
return loss
|
65 |
-
|
66 |
-
def validation_step(self, batch, batch_idx):
|
67 |
-
x, y = batch
|
68 |
-
y_hat = self.model(x)
|
69 |
-
loss = self.loss_fn(y_hat, y)
|
70 |
-
acc = self.accuracy(y_hat.argmax(dim=1),y)
|
71 |
-
f1 = self.f1(y_hat.argmax(dim=1),y)
|
72 |
-
recall = self.recall(y_hat.argmax(dim=1),y)
|
73 |
-
self.log('val_loss', loss,on_step=False,on_epoch=True)
|
74 |
-
self.log('val_acc', acc,on_step=False,on_epoch=True)
|
75 |
-
self.log('val_f1',f1,on_step=False,on_epoch=True)
|
76 |
-
self.log('val_recall',recall,on_step=False,on_epoch=True)
|
77 |
-
|
78 |
-
|
79 |
-
def configure_optimizers(self):
|
80 |
-
optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate,betas=(self.beta1,self.beta2),eps=self.eps)
|
81 |
-
scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
|
82 |
-
return {'optimizer': optimizer, 'lr_scheduler': scheduler}
|
83 |
-
|
84 |
-
|
85 |
-
#load model
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
st.markdown("<h1 style='text-align: center; '>Skin Leision Diagnosis</h1>",unsafe_allow_html=True)
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
# Display a file uploader widget for the user to upload an image
|
97 |
-
|
98 |
-
uploaded_file = st.file_uploader("Choose an Skin image file", type=["jpg", "jpeg", "png"])
|
99 |
-
|
100 |
-
# Load the uploaded image, or display emojis if no file was uploaded
|
101 |
-
with st.container():
|
102 |
-
if uploaded_file is not None:
|
103 |
-
|
104 |
-
image = Image.open(uploaded_file)
|
105 |
-
st.image(image, caption='Diagnosis', use_column_width=True)
|
106 |
-
model = timm.create_model(model_name='efficientnet_b0', pretrained=True,num_classes=4)
|
107 |
-
data_cfg = timm.data.resolve_data_config(model.pretrained_cfg)
|
108 |
-
transform = timm.data.create_transform(**data_cfg)
|
109 |
-
model_transforms = torchvision.transforms.Compose([transform])
|
110 |
-
transformed_image = model_transforms(image)
|
111 |
-
brain_model = torch.load('models/timm_skin_model.pth')
|
112 |
-
|
113 |
-
brain_model.eval()
|
114 |
-
with torch.inference_mode():
|
115 |
-
with st.progress(100):
|
116 |
-
|
117 |
-
#class_names = ['Glinomia','Meningomia','notumar','pituary']
|
118 |
-
prediction = torch.nn.functional.softmax(brain_model(transformed_image.unsqueeze(dim=0))[0], dim=0)
|
119 |
-
prediction_score, pred_label_idx = torch.topk(prediction, 1)
|
120 |
-
pred_label_idx.squeeze_()
|
121 |
-
predicted_label = idx_to_labels[str(pred_label_idx.item())]
|
122 |
-
st.write( f'Predicted Label: {predicted_label}')
|
123 |
-
if st.button('Know More'):
|
124 |
-
generator = pipeline("text-generation",model=text_model,tokenizer=tokenizer)
|
125 |
-
input_text = f"Patient has {predicted_label} and is advised to take the following medicines:"
|
126 |
-
with st.spinner('Generating Text'):
|
127 |
-
generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)
|
128 |
-
st.markdown(generator(input_text, max_length=300, do_sample=True, top_k=50, top_p=0.95, num_return_sequences=1)[0]['generated_text'])
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
else:
|
143 |
-
st.success("Please upload an image file 🧠")
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/requirements.txt
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
captum==0.6.0
|
2 |
-
lightning==2.0.1
|
3 |
-
matplotlib==3.6.3
|
4 |
-
Pillow==9.5.0
|
5 |
-
shap==0.41.0
|
6 |
-
streamlit==1.20.0
|
7 |
-
timm==0.6.13
|
8 |
-
torch==2.0.0
|
9 |
-
torchmetrics==0.11.4
|
10 |
-
torchvision==0.15.1
|
11 |
-
transformers==4.27.4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Medical Diagnosis App/skin_labels.json
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"0":"actinic keratoses and intraepithelial carcinoma",
|
3 |
-
"1": "basal cell carcinoma",
|
4 |
-
"2":"benign keratosis-like lesions",
|
5 |
-
"3": "dermatofibroma",
|
6 |
-
"4": "melanoma",
|
7 |
-
"5": "melanocytic nevi",
|
8 |
-
"6": "vascular lesions"
|
9 |
-
|
10 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|