|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import tensorflow as tf |
|
|
|
import sklearn |
|
import random |
|
import matplotlib.pyplot as plt |
|
import requests |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inception_net = tf.keras.applications.EfficientNetB7() |
|
|
|
|
|
|
|
|
|
|
|
import requests |
|
|
|
response = requests.get("https://git.io/JJkYN") |
|
labels = response.text.split("\n") |
|
|
|
def classify_image(inp): |
|
inp = inp.reshape((-1, 600, 600, 3)) |
|
inp = tf.keras.applications.efficientnet_v2.preprocess_input(inp) |
|
prediction = inception_net.predict(inp).flatten() |
|
confidences = {labels[i]: float(prediction[i]) for i in range(1000)} |
|
return confidences |
|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
title = "Simple Image Classifier" |
|
Description = "A image classifier demo , using pretrained Efficient Net B7 and fine tuned on Animal Images dataset found on Kaggle ,tools used Tensorflow , PIL,numpy , sklearn" |
|
|
|
gr.Interface(fn=classify_image, |
|
title = title, |
|
description = Description, |
|
|
|
inputs=gr.Image(shape=(600, 600)), |
|
outputs=gr.Label(num_top_classes=3), |
|
).launch() |
|
|
|
|