#!/usr/bin/env python # coding: utf-8 # In[82]: import numpy as np import tensorflow_datasets as tfds import tensorflow as tf import tensorflow_hub as hub import sklearn import random from glob import glob import matplotlib.pyplot as plt import requests # In[83]: print("TF version:", tf.__version__) print("Hub version:", hub.__version__) print("GPU is", "available" if tf.config.list_physical_devices('GPU') else "NOT AVAILABLE") # In[94]: inception_net = tf.keras.applications.EfficientNetB7() # In[100]: import requests response = requests.get("https://git.io/JJkYN") labels = response.text.split("\n") def classify_image(inp): inp = inp.reshape((-1, 600, 600, 3)) inp = tf.keras.applications.efficientnet_v2.preprocess_input(inp) prediction = inception_net.predict(inp).flatten() confidences = {labels[i]: float(prediction[i]) for i in range(1000)} return confidences # In[107]: import gradio as gr title = "Classifier" Description = "Model,used :- Efficient Net B7,fine tuned on dataset 'https://www.kaggle.com/datasets/iamsouravbanerjee/animal-image-dataset-90-different-animals'" gr.Interface(fn=classify_image, title = title, description = Description, inputs=gr.Image(shape=(600, 600)), outputs=gr.Label(num_top_classes=3), examples=["data/animals/animals/antelope/0a37838e99.jpg", "data/animals/animals/starfish/0a63e965c2.jpg"]).launch(share=True)