Spaces:
Sleeping
Sleeping
File size: 17,611 Bytes
985e206 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.init as init
from torch.utils.data import Dataset, DataLoader
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
import os
from datetime import datetime, timedelta
import argparse
import json
import matplotlib.pyplot as plt
# Vérifier si MPS est disponible
device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
print(f"Utilisation de l'appareil: {device}")
def load_brent_data(file_path):
print(f"Chargement des données Brent depuis {file_path}")
brent_data = pd.read_csv(file_path)
brent_data['brent_date'] = pd.to_datetime(brent_data['brent_date'])
# Filtrer les données à partir de 2024
brent_data = brent_data[brent_data['brent_date'].dt.year >= 2024]
brent_data = brent_data.sort_values('brent_date')
print(f"Données Brent chargées, triées et filtrées à partir de 2024. Shape: {brent_data.shape}")
return brent_data
def load_fuel_data(folder_path):
print(f"Chargement des données de carburant depuis {folder_path}")
all_data = []
for filename in os.listdir(folder_path):
if filename.endswith('.csv'):
file_path = os.path.join(folder_path, filename)
df = pd.read_csv(file_path)
df['rate_date'] = pd.to_datetime(df['rate_date'])
all_data.append(df)
fuel_data = pd.concat(all_data, ignore_index=True)
fuel_data = fuel_data[~fuel_data['fuel_name'].isin(['GPLc', 'E85'])]
# Filtrer les données à partir de 2024
fuel_data = fuel_data[fuel_data['rate_date'].dt.year >= 2024]
print(f"Données de carburant chargées et filtrées à partir de 2024. Shape: {fuel_data.shape}")
return fuel_data
def classify_stations(fuel_data):
print("Classification des stations par gamme de prix")
station_classifications = {}
fuel_types = fuel_data['fuel_name'].unique()
for fuel_type in fuel_types:
fuel_type_data = fuel_data[fuel_data['fuel_name'] == fuel_type]
station_avg_prices = fuel_type_data.groupby('id')['price'].mean().reset_index()
thresholds = np.percentile(station_avg_prices['price'], [33, 66])
def classify_price(price):
if price <= thresholds[0]:
return 'low-cost'
elif price <= thresholds[1]:
return 'normal'
else:
return 'premium'
station_classifications[fuel_type] = station_avg_prices.set_index('id')['price'].apply(classify_price).to_dict()
return station_classifications
def save_station_classifications(station_classifications, output_dir):
classification_df = pd.DataFrame(station_classifications)
classification_df.index.name = 'station_id'
classification_df.reset_index(inplace=True)
classification_file = os.path.join(output_dir, 'station_classifications.csv')
classification_df.to_csv(classification_file, index=False)
print(f"Classifications des stations sauvegardées dans {classification_file}")
class FuelPriceDataset(Dataset):
def __init__(self, data, sequence_length, target_days):
self.data = data
self.sequence_length = sequence_length
self.target_days = target_days
print(f"Shape of data in FuelPriceDataset: {self.data.shape}")
def __len__(self):
return len(self.data) - self.sequence_length - max(self.target_days)
def __getitem__(self, idx):
x = self.data.iloc[idx:idx+self.sequence_length].values
y = self.data.iloc[idx+self.sequence_length:idx+self.sequence_length+max(self.target_days)+1]['price'].values
y = [y[day] for day in self.target_days]
if idx == 0: # Print only for the first item
print(f"Sample input (X) at index 0:")
print(x)
print(f"Sample output (y) at index 0:")
print(y)
return torch.FloatTensor(x), torch.FloatTensor(y)
class LSTMModel(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(LSTMModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
# Initialisation des poids
for name, param in self.lstm.named_parameters():
if 'weight' in name:
init.xavier_uniform_(param)
elif 'bias' in name:
init.constant_(param, 0.0)
init.xavier_uniform_(self.fc.weight)
init.constant_(self.fc.bias, 0.0)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
def train_model(model, train_loader, val_loader, criterion, optimizer, num_epochs, patience, output_dir, fuel_type, price_range, scaler):
train_losses = []
val_losses = []
best_val_loss = float('inf')
epochs_no_improve = 0
for epoch in range(num_epochs):
model.train()
train_loss = 0
for batch_x, batch_y in train_loader:
batch_x, batch_y = batch_x.to(device), batch_y.to(device)
optimizer.zero_grad()
outputs = model(batch_x)
loss = criterion(outputs, batch_y)
loss.backward()
optimizer.step()
train_loss += loss.item()
model.eval()
val_loss = 0
with torch.no_grad():
for batch_x, batch_y in val_loader:
batch_x, batch_y = batch_x.to(device), batch_y.to(device)
outputs = model(batch_x)
loss = criterion(outputs, batch_y)
val_loss += loss.item()
train_loss /= len(train_loader)
val_loss /= len(val_loader)
train_losses.append(train_loss)
val_losses.append(val_loss)
print(f"Epoch [{epoch+1}/{num_epochs}], Train Loss: {train_loss:.6f}, Val Loss: {val_loss:.6f}")
if val_loss < best_val_loss:
best_val_loss = val_loss
epochs_no_improve = 0
# Sauvegarder le meilleur modèle
torch.save(model.state_dict(), os.path.join(output_dir, f'best_model_{fuel_type}_{price_range}.pth'))
else:
epochs_no_improve += 1
if epochs_no_improve == patience:
print(f"Early stopping triggered after {epoch + 1} epochs")
break
# Charger le meilleur modèle avant de faire les prédictions finales
model.load_state_dict(torch.load(os.path.join(output_dir, f'best_model_{fuel_type}_{price_range}.pth')))
# Générer le graphique et calculer les métriques
mse, mae, r2 = plot_predictions_vs_actual(model, val_loader, scaler, output_dir, fuel_type, price_range)
return train_losses, val_losses, mse, mae, r2
def plot_learning_curves(train_losses, val_losses, output_dir, fuel_type, price_range):
plt.figure(figsize=(10, 6))
plt.plot(train_losses, label='Train Loss')
plt.plot(val_losses, label='Validation Loss')
plt.title(f'Learning Curves - {fuel_type} - {price_range}')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.savefig(os.path.join(output_dir, f'learning_curves_{fuel_type}_{price_range}.png'))
plt.close()
def plot_predictions_vs_actual(model, val_loader, scaler, output_dir, fuel_type, price_range):
model.eval()
predictions = []
actual_values = []
with torch.no_grad():
for batch_x, batch_y in val_loader:
batch_x = batch_x.to(device)
outputs = model(batch_x)
predictions.extend(outputs.cpu().numpy())
actual_values.extend(batch_y.numpy())
predictions = np.array(predictions)
actual_values = np.array(actual_values)
plt.figure(figsize=(12, 6))
plt.scatter(actual_values[:, 0], predictions[:, 0], alpha=0.5)
plt.plot([actual_values[:, 0].min(), actual_values[:, 0].max()],
[actual_values[:, 0].min(), actual_values[:, 0].max()],
'r--', lw=2)
plt.xlabel('Valeurs réelles')
plt.ylabel('Prédictions')
plt.title(f'Prédictions vs Valeurs réelles - {fuel_type} - {price_range}')
plt.tight_layout()
plt.savefig(os.path.join(output_dir, f'predictions_vs_actual_{fuel_type}_{price_range}.png'))
plt.close()
# Calcul des métriques
mse = np.mean((predictions[:, 0] - actual_values[:, 0])**2)
mae = np.mean(np.abs(predictions[:, 0] - actual_values[:, 0]))
r2 = 1 - (np.sum((actual_values[:, 0] - predictions[:, 0])**2) /
np.sum((actual_values[:, 0] - np.mean(actual_values[:, 0]))**2))
print(f"MSE: {mse:.4f}")
print(f"MAE: {mae:.4f}")
print(f"R2 Score: {r2:.4f}")
return mse, mae, r2
def prepare_data_for_fuel_type_and_range(merged_data, fuel_type, price_range, station_classifications, sequence_length, target_days):
print(f"Préparation des données pour {fuel_type} - {price_range}")
stations_in_range = [station for station, range_ in station_classifications[fuel_type].items() if range_ == price_range]
fuel_data = merged_data[(merged_data['fuel_name'] == fuel_type) & (merged_data['id'].isin(stations_in_range))].copy()
# Traitement des variables temporelles
fuel_data['day_of_week'] = fuel_data['rate_date'].dt.dayofweek
fuel_data['month'] = fuel_data['rate_date'].dt.month
# Encodage cyclique pour le jour de la semaine et le mois
fuel_data['day_of_week_sin'] = np.sin(2 * np.pi * fuel_data['day_of_week'] / 7)
fuel_data['day_of_week_cos'] = np.cos(2 * np.pi * fuel_data['day_of_week'] / 7)
fuel_data['month_sin'] = np.sin(2 * np.pi * fuel_data['month'] / 12)
fuel_data['month_cos'] = np.cos(2 * np.pi * fuel_data['month'] / 12)
# Standardisation du prix du Brent (au lieu de normaliser)
scaler = StandardScaler()
fuel_data['brent_rate_eur_scaled'] = scaler.fit_transform(fuel_data[['brent_rate_eur']])
# Sélection des colonnes finales
columns_to_use = ['price', 'brent_rate_eur_scaled', 'day_of_week_sin', 'day_of_week_cos', 'month_sin', 'month_cos']
fuel_data_prepared = fuel_data[columns_to_use]
print("Statistiques des données préparées:")
print(fuel_data_prepared.describe())
print("\nNombre de valeurs uniques par colonne:")
print(fuel_data_prepared.nunique())
print("\nVérification des valeurs nulles:")
print(fuel_data_prepared.isnull().sum())
dataset = FuelPriceDataset(fuel_data_prepared, sequence_length, target_days)
train_size = int(0.8 * len(dataset))
train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, len(dataset) - train_size])
return train_dataset, val_dataset, scaler
def main(args):
print("Début du processus principal")
brent_data = load_brent_data(args.brent_data)
fuel_data = load_fuel_data(args.fuel_data)
print("Fusion des données Brent et carburant")
merged_data = pd.merge_asof(fuel_data.sort_values('rate_date'),
brent_data.reset_index().sort_values('brent_date'),
left_on='rate_date',
right_on='brent_date',
direction='nearest')
print(f"Données fusionnées. Shape: {merged_data.shape}")
station_classifications = classify_stations(fuel_data)
save_station_classifications(station_classifications, args.output_dir)
price_ranges = ['low-cost', 'normal', 'premium']
fuel_types = merged_data['fuel_name'].unique()
for fuel_type in fuel_types:
for price_range in price_ranges:
print(f"\nTraitement de {fuel_type} - {price_range}")
output_dir = os.path.join(args.output_dir, fuel_type, price_range)
os.makedirs(output_dir, exist_ok=True)
try:
train_dataset, val_dataset, scaler = prepare_data_for_fuel_type_and_range(
merged_data, fuel_type, price_range, station_classifications, args.sequence_length, args.target_days
)
if len(train_dataset) < args.min_train_samples:
print(f"Pas assez de données pour {fuel_type} - {price_range}. Ignoré.")
continue
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=args.batch_size, shuffle=False)
print(f"Taille du dataset d'entraînement : {len(train_dataset)}")
print(f"Taille du dataset de validation : {len(val_dataset)}")
print(f"Nombre de batchs d'entraînement : {len(train_loader)}")
print(f"Nombre de batchs de validation : {len(val_loader)}")
sample_x, sample_y = next(iter(train_loader))
input_size = sample_x.shape[2]
model = LSTMModel(input_size, args.hidden_size, args.num_layers, len(args.target_days)).to(device)
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
train_losses, val_losses, mse, mae, r2 = train_model(
model, train_loader, val_loader, criterion, optimizer,
args.num_epochs, args.patience, output_dir, fuel_type, price_range, scaler
)
# Sauvegarder le modèle final
model_filename = os.path.join(output_dir, f'final_model_{fuel_type}_{price_range}.pth')
torch.save(model.state_dict(), model_filename)
# Sauvegarder le scaler
scaler_filename = os.path.join(output_dir, f'scaler_{fuel_type}_{price_range}.pkl')
pd.to_pickle(scaler, scaler_filename)
# Sauvegarder les paramètres du modèle
params = {
'input_size': input_size,
'hidden_size': args.hidden_size,
'num_layers': args.num_layers,
'output_size': len(args.target_days),
'sequence_length': args.sequence_length,
'target_days': args.target_days
}
params_filename = os.path.join(output_dir, f'model_params_{fuel_type}_{price_range}.json')
with open(params_filename, 'w') as f:
json.dump(params, f)
# Sauvegarder les métriques
metrics = {
'mse': mse,
'mae': mae,
'r2': r2
}
metrics_filename = os.path.join(output_dir, f'metrics_{fuel_type}_{price_range}.json')
with open(metrics_filename, 'w') as f:
json.dump(metrics, f)
# Tracer et sauvegarder les courbes d'apprentissage
plot_learning_curves(train_losses, val_losses, output_dir, fuel_type, price_range)
print(f"Modèle, paramètres, métriques et graphiques pour {fuel_type} - {price_range} sauvegardés dans {output_dir}")
except Exception as e:
print(f"Erreur lors du traitement de {fuel_type} - {price_range}: {str(e)}")
print("Processus terminé pour tous les types de carburant et gammes de prix.")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Entraînement du modèle de prédiction des prix du carburant")
parser.add_argument("--brent_data", type=str, required=True, help="Chemin vers le fichier de données Brent")
parser.add_argument("--fuel_data", type=str, required=True, help="Chemin vers le dossier contenant les données de carburant")
parser.add_argument("--output_dir", type=str, default="./output", help="Dossier de sortie pour les modèles et les paramètres")
parser.add_argument("--hidden_size", type=int, default=64, help="Taille de la couche cachée LSTM")
parser.add_argument("--num_layers", type=int, default=2, help="Nombre de couches LSTM")
parser.add_argument("--sequence_length", type=int, default=30, help="Longueur de la séquence d'entrée")
parser.add_argument("--target_days", nargs='+', type=int, default=[3, 7, 15, 30], help="Jours cibles pour la prédiction")
parser.add_argument("--batch_size", type=int, default=32, help="Taille du batch pour l'entraînement")
parser.add_argument("--num_epochs", type=int, default=50, help="Nombre d'époques d'entraînement")
parser.add_argument("--learning_rate", type=float, default=0.001, help="Taux d'apprentissage")
parser.add_argument("--min_train_samples", type=int, default=50, help="Nombre minimum d'échantillons d'entraînement")
parser.add_argument("--patience", type=int, default=5, help="Nombre d'époques sans amélioration avant l'arrêt précoce")
args = parser.parse_args()
print(f"Arguments reçus: {args}")
os.makedirs(args.output_dir, exist_ok=True)
print(f"Dossier de sortie principal créé/vérifié: {args.output_dir}")
main(args) |