fuelprediction / runningscript.py
VincentGOURBIN's picture
Upload folder using huggingface_hub
16439fb verified
# Importation des bibliothèques nécessaires
import pandas as pd
import numpy as np
import glob
import os
import joblib
import gradio as gr
from sklearn.preprocessing import LabelEncoder, StandardScaler
from xgboost import XGBRegressor
# 1. Chargement des données
print("Chargement des données...")
parquet_files = glob.glob('subset_top5_per_station_fuel.parquet')
if not parquet_files:
raise FileNotFoundError("Aucun fichier Parquet trouvé dans le répertoire spécifié.")
df_list = []
for f in parquet_files:
print(f"Chargement du fichier {f}")
df_list.append(pd.read_parquet(f))
df = pd.concat(df_list, ignore_index=True)
del df_list # Libération de la mémoire
print(f"Nombre total d'enregistrements: {len(df)}")
# 2. Prétraitement des données
print("Prétraitement des données...")
df['rate_date'] = pd.to_datetime(df['rate_date'])
df['brent_date'] = pd.to_datetime(df['brent_date'])
df = df.sort_values('rate_date')
df = df.dropna()
# Exclure les carburants E85 et GPLc
df = df[~df['fuel_name'].isin(['E85', 'GPLc'])]
# Sélection des colonnes pertinentes
cols_to_use = ['station_id', 'commune', 'marque', 'departement', 'regioncode',
'coordlatitude', 'coordlongitude', 'fuel_name', 'price',
'rate_date', 'brent_rate_eur', 'brent_date']
df = df[cols_to_use]
# Encodage des variables catégorielles
print("Encodage des variables catégorielles...")
label_encoders = {}
categorical_cols = ['station_id', 'commune', 'marque', 'departement',
'regioncode', 'fuel_name']
for col in categorical_cols:
le = LabelEncoder()
df[col] = le.fit_transform(df[col].astype(str))
label_encoders[col] = le
# Création des mappings pour les communes et les départements
commune_mapping = pd.DataFrame({
'commune_encoded': np.arange(len(label_encoders['commune'].classes_)),
'commune_decoded': label_encoders['commune'].classes_
})
departement_mapping = pd.DataFrame({
'departement_encoded': np.arange(len(label_encoders['departement'].classes_)),
'departement_decoded': label_encoders['departement'].classes_
})
# Obtenir les types de carburant uniques
fuel_types = label_encoders['fuel_name'].classes_.tolist()
# Obtenir les départements uniques
departments = label_encoders['departement'].classes_.tolist()
# Fonction pour mettre à jour la liste des stations
def update_stations(commune_input, departments):
if commune_input:
# Recherche insensible à la casse avec correspondance partielle
matching_communes = commune_mapping[commune_mapping['commune_decoded'].str.contains(commune_input, case=False, na=False)]
if matching_communes.empty:
return gr.update(choices=[], value=None)
commune_encoded_values = matching_communes['commune_encoded'].values
# Filtrer les stations par les communes correspondantes
filtered_df = df[df['commune'].isin(commune_encoded_values)]
elif departments:
# Vérifier si les départements existent
valid_departments = [dept for dept in departments if dept in label_encoders['departement'].classes_]
if not valid_departments:
return gr.update(choices=[], value=None)
# Filtrer les stations par départements
departments_encoded = label_encoders['departement'].transform(valid_departments)
filtered_df = df[df['departement'].isin(departments_encoded)]
else:
# Si aucun filtre, afficher toutes les stations
filtered_df = df.copy()
if filtered_df.empty:
return gr.update(choices=[], value=None)
# Obtenir les informations des stations uniques
station_info = filtered_df[['station_id', 'commune', 'marque']].drop_duplicates()
# Décoder les valeurs encodées
station_info['station_id_decoded'] = label_encoders['station_id'].inverse_transform(station_info['station_id'])
station_info['commune_decoded'] = label_encoders['commune'].inverse_transform(station_info['commune'])
station_info['marque_decoded'] = label_encoders['marque'].inverse_transform(station_info['marque'])
# Construire les chaînes d'affichage
station_info['station_display'] = station_info.apply(
lambda row: f"{row['commune_decoded']} - {row['marque_decoded']} ({row['station_id_decoded']})",
axis=1
)
# Construire les choix sous forme de tuples (affichage, valeur)
station_choices = list(zip(station_info['station_display'], station_info['station_id_decoded']))
return gr.update(choices=station_choices, value=None)
# Fonction pour effectuer les prévisions
def forecast_prices(model, last_known_data, scaler, required_columns, brent_price, horizons=[3, 7, 15, 30]):
forecasts = {}
for horizon in horizons:
future_date = last_known_data['rate_date'] + pd.Timedelta(days=horizon)
input_data = last_known_data.copy()
input_data['rate_date'] = future_date
input_data['day_of_week'] = future_date.dayofweek
input_data['month'] = future_date.month
input_data['year'] = future_date.year
# Mise à jour des variables de décalage du Brent
for lag in [1, 3, 7, 15, 30]:
input_data[f'brent_rate_eur_lag_{lag}'] = brent_price
# Préparation des features
input_features = input_data.drop(['price', 'rate_date', 'brent_date'])
input_features = input_features.to_frame().T
# S'assurer que toutes les colonnes sont présentes
missing_cols = set(required_columns) - set(input_features.columns)
for col in missing_cols:
input_features[col] = 0
input_features = input_features[required_columns]
# Mise à l'échelle des features
input_features_scaled = scaler.transform(input_features)
predicted_price = model.predict(input_features_scaled)
forecasts[horizon] = predicted_price[0]
return forecasts
# Fonction principale pour obtenir les prédictions
def get_predictions(station_selection, fuel_types_selected, brent_price, commune_input, departments):
if not station_selection or not fuel_types_selected:
return "Veuillez sélectionner une station et au moins un type de carburant."
results = ""
# station_selection est l'ID décodé de la station
station_id = station_selection
if station_id not in label_encoders['station_id'].classes_:
return f"Station ID {station_id} non trouvé dans les données."
station_id_encoded = label_encoders['station_id'].transform([station_id])[0]
for fuel_type in fuel_types_selected:
# Charger le modèle et le scaler pour le type de carburant
model_filename = f'fuel_price_model_{fuel_type}.pkl'
scaler_filename = f'scaler_{fuel_type}.pkl'
if not os.path.exists(model_filename) or not os.path.exists(scaler_filename):
results += f"\nModèle ou scaler pour le carburant {fuel_type} non trouvé."
continue
model = joblib.load(model_filename)
scaler = joblib.load(scaler_filename)
# Obtenir les 5 derniers prix
fuel_name_encoded = label_encoders['fuel_name'].transform([fuel_type])[0]
df_station_fuel = df[(df['station_id'] == station_id_encoded) & (df['fuel_name'] == fuel_name_encoded)]
df_station_fuel = df_station_fuel.sort_values('rate_date', ascending=False)
if df_station_fuel.empty:
results += f"\nAucune donnée trouvée pour la station {station_id} et le carburant {fuel_type}."
continue
last_5_prices = df_station_fuel.head(5)[['rate_date', 'price']]
last_5_prices['rate_date'] = last_5_prices['rate_date'].dt.strftime('%Y-%m-%d %H:%M:%S')
results += f"\n\nType de carburant : {fuel_type}\nLes 5 derniers prix :\n{last_5_prices.to_string(index=False)}"
# Préparation des données pour la prédiction
last_known_data = df_station_fuel.iloc[0].copy()
last_known_data['brent_rate_eur'] = brent_price
# Recréer les features utilisées lors de l'entraînement
df_fuel = df[df['fuel_name'] == fuel_name_encoded].copy()
# Ingénierie des caractéristiques
df_fuel['day_of_week'] = df_fuel['rate_date'].dt.dayofweek
df_fuel['month'] = df_fuel['rate_date'].dt.month
df_fuel['year'] = df_fuel['rate_date'].dt.year
for lag in [1, 3, 7, 15, 30]:
df_fuel[f'brent_rate_eur_lag_{lag}'] = df_fuel['brent_rate_eur'].shift(lag)
df_fuel = df_fuel.dropna()
X = df_fuel.drop(['price', 'rate_date', 'brent_date'], axis=1)
required_columns = X.columns.tolist()
# Prévisions
forecasts = forecast_prices(model, last_known_data, scaler, required_columns, brent_price)
results += "\nPrévisions :\n"
for horizon, price in forecasts.items():
results += f"Dans {horizon} jours : {price:.4f} €\n"
return results
# CSS personnalisé pour le fond noir et le texte clair
custom_css = """
body {
background-color: black;
color: white;
}
.gradio-container {
background-color: black;
color: white;
}
"""
# 7. Construction de l'Interface Gradio avec le fond noir
with gr.Blocks(css=custom_css) as demo:
gr.Markdown("# Prédiction du Prix des Carburants")
with gr.Row():
fuel_type_checkbox = gr.CheckboxGroup(
choices=fuel_types,
label="Sélectionnez les types de carburant",
value=fuel_types # Tous sélectionnés par défaut
)
with gr.Row():
commune_input = gr.Textbox(
label="Entrez la commune",
placeholder="Tapez le nom de la commune..."
)
department_dropdown = gr.Dropdown(
choices=departments,
label="Sélectionnez le(s) département(s)",
multiselect=True
)
station_dropdown = gr.Dropdown(
choices=[],
label="Sélectionnez la station"
)
# Mettre à jour la liste des stations lorsque la commune ou le département change
def update_stations_wrapper(commune, departments):
return update_stations(commune, departments)
commune_input.change(
fn=update_stations_wrapper,
inputs=[commune_input, department_dropdown],
outputs=station_dropdown
)
department_dropdown.change(
fn=update_stations_wrapper,
inputs=[commune_input, department_dropdown],
outputs=station_dropdown
)
brent_price_input = gr.Number(
label="Entrez le cours du Brent (€)",
value=70.0
)
predict_button = gr.Button("Prédire")
output = gr.Textbox(label="Résultats")
def on_predict_click(station_selection, fuel_types_selected, brent_price, commune_input, departments):
return get_predictions(station_selection, fuel_types_selected, brent_price, commune_input, departments)
predict_button.click(
fn=on_predict_click,
inputs=[station_dropdown, fuel_type_checkbox, brent_price_input, commune_input, department_dropdown],
outputs=output
)
demo.launch(share=True)