Vipitis commited on
Commit
0eec9d7
1 Parent(s): 9f61a39

expanded readme portion in the markdown.

Browse files
Files changed (2) hide show
  1. ShaderEval.py +1 -0
  2. app.py +20 -3
ShaderEval.py CHANGED
@@ -201,6 +201,7 @@ class Suite(evaluate.EvaluationSuite):
201
  args_for_task["split"] = (task.split + f"[:{snippet}]") #make a downselection of the split via keywordarg in the .run() call?
202
  results = task_evaluator.compute(**args_for_task)
203
 
 
204
  results["task_name"] = task_name + "/" + task.subset if task.subset else task_name
205
  results["data_preprocessor"] = str(task.data_preprocessor) if task.data_preprocessor is not None else None
206
  results_all.append(results)
 
201
  args_for_task["split"] = (task.split + f"[:{snippet}]") #make a downselection of the split via keywordarg in the .run() call?
202
  results = task_evaluator.compute(**args_for_task)
203
 
204
+ results["model_cp"] = model_or_pipeline #added this to the output, should be useful. But be careful when passed something that is not a string. #TODO: currently the same for all tasks, maybe move to the list?
205
  results["task_name"] = task_name + "/" + task.subset if task.subset else task_name
206
  results["data_preprocessor"] = str(task.data_preprocessor) if task.data_preprocessor is not None else None
207
  results_all.append(results)
app.py CHANGED
@@ -10,13 +10,23 @@ suite = evaluate.EvaluationSuite.load("Vipitis/ShaderEval") #downloads it
10
  def run_suite(model_cp, snippet):
11
  # print(model_cp, snippet)
12
  results = suite.run(model_cp, snippet)
13
- return results[0]["exact_match"]
14
 
15
  with gr.Blocks() as site:
16
  text = gr.Markdown("""# Welcome to the ShaderEval Suite.
17
 
18
  This space hosts the ShaderEval Suite. more to follow soon.
19
 
 
 
 
 
 
 
 
 
 
 
20
  ## Instructions
21
  ### Run the code yourself:.
22
  ```python
@@ -31,9 +41,16 @@ with gr.Blocks() as site:
31
  - Select how many **samples** to run (there us up to 100 from the test set)
32
  - Click **Run** to run the suite
33
  - The results will be displayed in the **Output** box
34
- """)
 
 
 
 
 
 
 
35
  model_cp = gr.Textbox(value="gpt2", label="Model Checkpoint", interactive=True)
36
- first_n = gr.Slider(minimum=1, maximum=100, default=10, label="num_samples", step=1.0)
37
  output = gr.Textbox(label="Output")
38
  run_button = gr.Button(label="Run")
39
  run_button.click(fn=run_suite, inputs=[model_cp, first_n], outputs=output)
 
10
  def run_suite(model_cp, snippet):
11
  # print(model_cp, snippet)
12
  results = suite.run(model_cp, snippet)
13
+ return results[0]
14
 
15
  with gr.Blocks() as site:
16
  text = gr.Markdown("""# Welcome to the ShaderEval Suite.
17
 
18
  This space hosts the ShaderEval Suite. more to follow soon.
19
 
20
+ # Task1: Return Completion
21
+ ## Explanation
22
+ Modelled after the [CodeXGLUE code_completion_line](https://huggingface.co/datasets/code_x_glue_cc_code_completion_line) task.
23
+ Using the "return_completion" subset of the [Shadertoys-fine dataset](https://huggingface.co/datasets/Vipits/Shadertoys-fine).
24
+ All preprocessing and post proessing is done by the custom evaluator for this suite. It should be as easy as just giving it a model checkpoint that can do the "text-generation" task.
25
+ Evaluated is currently with just [exact_match](https://huggingface.co/metrics/exact_match).
26
+
27
+ ## Notice
28
+ should you find any model that throws an error, please let me know in the issues tab. Several parts of this suite are still missing.
29
+
30
  ## Instructions
31
  ### Run the code yourself:.
32
  ```python
 
41
  - Select how many **samples** to run (there us up to 100 from the test set)
42
  - Click **Run** to run the suite
43
  - The results will be displayed in the **Output** box
44
+
45
+ ## Todo (feel free to contribute in a Pull Request)
46
+ - leaderboard
47
+ - supporting batches to speed up inference
48
+ - CER metric
49
+ - removing the pad_token warning
50
+ """
51
+ )
52
  model_cp = gr.Textbox(value="gpt2", label="Model Checkpoint", interactive=True)
53
+ first_n = gr.Slider(minimum=1, maximum=100, default=15, label="num_samples", step=1.0)
54
  output = gr.Textbox(label="Output")
55
  run_button = gr.Button(label="Run")
56
  run_button.click(fn=run_suite, inputs=[model_cp, first_n], outputs=output)