File size: 12,360 Bytes
85efb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc559f6
85efb5b
5934d4b
 
 
 
 
 
 
 
 
9aacbe0
5934d4b
 
 
85efb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc559f6
0733f19
85efb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5934d4b
 
 
 
 
 
 
 
 
85efb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5934d4b
85efb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5934d4b
85efb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5934d4b
 
 
 
85efb5b
 
 
 
 
 
5934d4b
 
85efb5b
 
 
 
 
 
 
9aacbe0
85efb5b
5934d4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85efb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import spaces

import os
import re
import traceback

import torch
import gradio as gr

import sys

import numpy as np

from longvu.builder import load_pretrained_model
from longvu.constants import (
    DEFAULT_IMAGE_TOKEN,
    IMAGE_TOKEN_INDEX,
)
from longvu.conversation import conv_templates, SeparatorStyle
from longvu.mm_datautils import (
    KeywordsStoppingCriteria,
    process_images,
    tokenizer_image_token,
)
from decord import cpu, VideoReader
from huggingface_hub import snapshot_download

title_markdown = """
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
  <div>
    <h1 >LongVU: Spatiotemporal Adaptive Compression for Long Video-Language Understanding</h1>
  </div>
</div>
<div align="center">
    <div style="display:flex; gap: 0.25rem; margin-top: 10px;" align="center">
        <a href='https://vision-cair.github.io/LongVU/'><img src='https://img.shields.io/badge/Project-LongVU-blue'></a>
        <a href='https://huggingface.co/Vision-CAIR/LongVU_Qwen2_7B'><img src='https://img.shields.io/badge/model-checkpoints-yellow'></a>
    </div>
</div>
"""

block_css = """
#buttons button {
    min-width: min(120px,100%);
    color: #9C276A
}
"""

plum_color = gr.themes.colors.Color(
    name='plum',
    c50='#F8E4EF',
    c100='#E9D0DE',
    c200='#DABCCD',
    c300='#CBA8BC',
    c400='#BC94AB',
    c500='#AD809A',
    c600='#9E6C89',
    c700='#8F5878',
    c800='#804467',
    c900='#713056',
    c950='#662647',
)


class Chat:

    def __init__(self):
        self.version = "qwen"
        model_name = "cambrian_qwen"
        model_path = snapshot_download("Vision-CAIR/LongVU_Qwen2_7B", repo_type="model")
        device = "cuda"

        self.tokenizer, self.model, self.processor, _ = load_pretrained_model(model_path,  None, model_name, device=device)
        self.model.eval()

    def remove_after_last_dot(self, s):
        last_dot_index = s.rfind('.')
        if last_dot_index == -1:
            return s
        return s[:last_dot_index + 1]
    
    @spaces.GPU(duration=120)
    @torch.inference_mode()
    def generate(self, data: list, message, temperature, top_p, max_output_tokens):
        # TODO: support multiple turns of conversation.
        assert len(data) == 1

        tensor, image_sizes, modal = data[0]

        conv = conv_templates[self.version].copy()

        if isinstance(message, str):
            conv.append_message("user", DEFAULT_IMAGE_TOKEN + '\n' + message)
        elif isinstance(message, list):
            if DEFAULT_IMAGE_TOKEN not in message[0]['content']:
                message[0]['content'] = DEFAULT_IMAGE_TOKEN + '\n' + message[0]['content']
            for mes in message:
                conv.append_message(mes["role"], mes["content"])

        conv.append_message("assistant", None)
        
        prompt = conv.get_prompt()

        input_ids = (
            tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
            .unsqueeze(0)
            .to(self.model.device)
        )

        if "llama3" in self.version:
            input_ids = input_ids[0][1:].unsqueeze(0)  # remove bos
        
        stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
        keywords = [stop_str]
        stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, input_ids)
        with torch.inference_mode():
            output_ids = self.model.generate(
                input_ids,
                images=tensor,
                image_sizes=image_sizes,
                do_sample=True,
                temperature=temperature,
                max_new_tokens=max_output_tokens,
                use_cache=True,
                top_p=top_p,
                stopping_criteria=[stopping_criteria],
            )
        
        pred = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
        
        return self.remove_after_last_dot(pred)


@spaces.GPU(duration=120)
def generate(image, video, message, chatbot, textbox_in, temperature, top_p, max_output_tokens, dtype=torch.float16):
    if textbox_in is None:
        raise gr.Error("Chat messages cannot be empty")
        return (
            gr.update(value=image, interactive=True),
            gr.update(value=video, interactive=True),
            message,
            chatbot,
            None,
        )
    data = []

    processor = handler.processor
    try:
        if image is not None:
            data.append((processor['image'](image).to(handler.model.device, dtype=dtype), None, '<image>'))
        elif video is not None:
            vr = VideoReader(video, ctx=cpu(0), num_threads=1)
            fps = float(vr.get_avg_fps())
            frame_indices = np.array(
                [
                    i
                    for i in range(
                        0,
                        len(vr),
                        round(fps),
                    )
                ]
            )
            video_tensor = []
            for frame_index in frame_indices:
                img = vr[frame_index].asnumpy()
                video_tensor.append(img)
            video_tensor = np.stack(video_tensor)
            image_sizes = [video_tensor[0].shape[:2]]
            video_tensor = process_images(video_tensor, processor, handler.model.config)
            video_tensor = [item.unsqueeze(0).to(handler.model.device, dtype=dtype) for item in video_tensor]
            data.append((video_tensor, image_sizes, '<video>'))
        elif image is None and video is None:
            data.append((None, None, '<text>'))
        else:
            raise NotImplementedError("Not support image and video at the same time")
    except Exception as e:
        traceback.print_exc()
        return gr.update(value=None, interactive=True), gr.update(value=None, interactive=True), message, chatbot, None

    assert len(message) % 2 == 0, "The message should be a pair of user and system message."

    show_images = ""
    if image is not None:
        show_images += f'<img src="./file={image}" style="display: inline-block;width: 250px;max-height: 400px;">'
    if video is not None:
        show_images += f'<video controls playsinline width="300" style="display: inline-block;"  src="./file={video}"></video>'

    one_turn_chat = [textbox_in, None]

    # 1. first run case
    if len(chatbot) == 0:
        one_turn_chat[0] += "\n" + show_images
    # 2. not first run case
    else:
        # scanning the last image or video
        length = len(chatbot)
        for i in range(length - 1, -1, -1):
            previous_image = re.findall(r'<img src="./file=(.+?)"', chatbot[i][0])
            previous_video = re.findall(r'<video controls playsinline width="500" style="display: inline-block;"  src="./file=(.+?)"', chatbot[i][0])

            if len(previous_image) > 0:
                previous_image = previous_image[-1]
                # 2.1 new image append or pure text input will start a new conversation
                if (video is not None) or (image is not None and os.path.basename(previous_image) != os.path.basename(image)):
                    message.clear()
                    one_turn_chat[0] += "\n" + show_images
                break
            elif len(previous_video) > 0:
                previous_video = previous_video[-1]
                # 2.2 new video append or pure text input will start a new conversation
                if image is not None or (video is not None and os.path.basename(previous_video) != os.path.basename(video)):
                    message.clear()
                    one_turn_chat[0] += "\n" + show_images
                break

    message.append({'role': 'user', 'content': textbox_in})
    text_en_out = handler.generate(data, message, temperature=temperature, top_p=top_p, max_output_tokens=max_output_tokens)
    message.append({'role': 'assistant', 'content': text_en_out})

    one_turn_chat[1] = text_en_out
    chatbot.append(one_turn_chat)

    return gr.update(value=image, interactive=True), gr.update(value=video, interactive=True), message, chatbot, None


def regenerate(message, chatbot):
    message.pop(-1), message.pop(-1)
    chatbot.pop(-1)
    return message, chatbot


def clear_history(message, chatbot):
    message.clear(), chatbot.clear()
    return (gr.update(value=None, interactive=True),
            gr.update(value=None, interactive=True),
            message, chatbot,
            gr.update(value=None, interactive=True))

handler = Chat()

textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False)

theme = gr.themes.Default(primary_hue=plum_color)
# theme.update_color("primary", plum_color.c500)
theme.set(slider_color="#9C276A")
theme.set(block_title_text_color="#9C276A")
theme.set(block_label_text_color="#9C276A")
theme.set(button_primary_text_color="#9C276A")

with gr.Blocks(title='LongVU', theme=theme, css=block_css) as demo:
    gr.Markdown(title_markdown)
    message = gr.State([])

    with gr.Row():
        with gr.Column(scale=3):
            image = gr.State(None)
            video = gr.Video(label="Input Video")

            with gr.Accordion("Parameters", open=True) as parameter_row:

                temperature = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.2,
                    step=0.1,
                    interactive=True,
                    label="Temperature",
                )

                top_p = gr.Slider(
                        minimum=0.0,
                        maximum=1.0,
                        value=0.7,
                        step=0.1,
                        interactive=True,
                        label="Top P",
                )

                max_output_tokens = gr.Slider(
                    minimum=64,
                    maximum=512,
                    value=128,
                    step=64,
                    interactive=True,
                    label="Max output tokens",
                )

        with gr.Column(scale=7):
            chatbot = gr.Chatbot(label="LongVU", bubble_full_width=True, height=420)
            with gr.Row():
                with gr.Column(scale=8):
                    textbox.render()
                with gr.Column(scale=1, min_width=50):
                    submit_btn = gr.Button(value="Send", variant="primary", interactive=True)
            with gr.Row(elem_id="buttons") as button_row:
                upvote_btn     = gr.Button(value="πŸ‘  Upvote", interactive=True)
                downvote_btn   = gr.Button(value="πŸ‘Ž  Downvote", interactive=True)
                regenerate_btn = gr.Button(value="πŸ”„  Regenerate", interactive=True)
                clear_btn      = gr.Button(value="πŸ—‘οΈ  Clear history", interactive=True)

    with gr.Row():
        with gr.Column():
            gr.Examples(
                examples=[
                    [
                        f"./examples/video3.mp4",
                        "What is the moving direction of the yellow ball?",
                    ],
                    [
                        f"./examples/video1.mp4",
                        "Describe this video in detail.",
                    ],
                    [
                        f"./examples/video2.mp4",
                        "What is the name of the store?",
                    ],
                ],
                inputs=[video, textbox],
            )

    submit_btn.click(
        generate, 
        [image, video, message, chatbot, textbox, temperature, top_p, max_output_tokens],
        [image, video, message, chatbot, textbox])

    textbox.submit(
        generate,
        [
            image,
            video,
            message,
            chatbot,
            textbox,
            temperature,
            top_p,
            max_output_tokens,
        ],
        [image, video, message, chatbot, textbox],
    )

    regenerate_btn.click(
        regenerate, 
        [message, chatbot], 
        [message, chatbot]).then(
        generate, 
        [image, video, message, chatbot, textbox, temperature, top_p, max_output_tokens], 
        [image, video, message, chatbot])

    clear_btn.click(
        clear_history, 
        [message, chatbot],
        [image, video, message, chatbot, textbox])

demo.launch()