File size: 1,448 Bytes
85efb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
# pyre-unsafe
import re

import torch.nn as nn


class IdentityMap(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x, *args, **kwargs):
        return x

    @property
    def config(self):
        return {"mm_projector_type": "identity"}


class SimpleResBlock(nn.Module):
    def __init__(self, channels):
        super().__init__()
        self.pre_norm = nn.LayerNorm(channels)

        self.proj = nn.Sequential(
            nn.Linear(channels, channels), nn.GELU(), nn.Linear(channels, channels)
        )

    def forward(self, x):
        x = self.pre_norm(x)
        return x + self.proj(x)


def build_vision_projector(config, delay_load=False, **kwargs):
    projector_type = getattr(config, "mm_projector_type", "linear")
    config.mm_hidden_size = 256

    if projector_type == "linear":
        return nn.Linear(config.mm_hidden_size, config.hidden_size)

    mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type)
    if mlp_gelu_match:
        mlp_depth = int(mlp_gelu_match.group(1))
        modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)]
        for _ in range(1, mlp_depth):
            modules.append(nn.GELU())
            modules.append(nn.Linear(config.hidden_size, config.hidden_size))
        return nn.Sequential(*modules)

    if projector_type == "identity":
        return IdentityMap()

    raise ValueError(f"Unknown projector type: {projector_type}")