Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,985 Bytes
85efb5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 |
import base64
import dataclasses
from enum import auto, Enum
from io import BytesIO
from typing import Any, Dict, List, Tuple, Union
from longvu.file_io import PathManager
from PIL import Image
from transformers import AutoTokenizer
class SeparatorStyle(Enum):
"""Different separator style."""
SINGLE = auto()
TWO = auto()
MPT = auto()
PLAIN = auto()
LLAMA_2 = auto()
LLAMA_3 = auto()
LLAMA_3_1 = auto()
LLAMA_3_2 = auto()
QWEN = auto()
CHATML = auto()
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history."""
system: str
roles: List[str]
messages: List[List[str]]
offset: int
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
sep: str = "###"
# pyre-fixme[8]: Attribute has type `str`; used as `None`.
sep2: str = None
version: str = "Unknown"
tokenizer: Any = None
# Stop criteria (the default one is EOS token)
# pyre-fixme[8]: Attribute has type `Union[List[str], str]`; used as `None`.
stop_str: Union[str, List[str]] = None
# Stops generation if meeting any token in this list
# pyre-fixme[8]: Attribute has type `List[int]`; used as `None`.
stop_token_ids: List[int] = None
skip_next: bool = False
def get_prompt(self):
messages = self.messages
if len(messages) > 0 and type(messages[0][1]) is tuple:
messages = self.messages.copy()
init_role, init_msg = messages[0].copy()
init_msg = init_msg[0].replace("<image>", "").strip()
if "mmtag" in self.version:
messages[0] = (init_role, init_msg)
messages.insert(0, (self.roles[0], "<Image><image></Image>"))
messages.insert(1, (self.roles[1], "Received."))
else:
messages[0] = (init_role, "<image>\n" + init_msg)
if self.sep_style == SeparatorStyle.SINGLE:
ret = self.system + self.sep
for role, message in messages:
if message:
if type(message) is tuple:
message, _, _ = message
ret += role + ": " + message + self.sep
else:
ret += role + ":"
elif self.sep_style == SeparatorStyle.TWO:
seps = [self.sep, self.sep2]
ret = self.system + seps[0]
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message, _, _ = message
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
elif self.sep_style == SeparatorStyle.CHATML:
ret = "" if self.system == "" else self.system + self.sep + "\n"
for role, message in messages:
if message:
if type(message) is tuple:
message, images, _ = message
message = "<image>" * len(images) + message
ret += role + "\n" + message + self.sep + "\n"
else:
ret += role + "\n"
return ret
elif self.sep_style == SeparatorStyle.MPT:
ret = self.system + self.sep
for role, message in messages:
if message:
if type(message) is tuple:
message, _, _ = message
ret += role + message + self.sep
else:
ret += role
elif self.sep_style == SeparatorStyle.LLAMA_2:
wrap_sys = lambda msg: (
f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg
)
wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
ret = ""
for i, (role, message) in enumerate(messages):
if i == 0:
assert message, "first message should not be none"
assert role == self.roles[0], "first message should come from user"
if message:
if type(message) is tuple:
message, _, _ = message
if i == 0:
message = wrap_sys(self.system) + message
if i % 2 == 0:
message = wrap_inst(message)
ret += self.sep + message
else:
ret += " " + message + " " + self.sep2
else:
ret += ""
ret = ret.lstrip(self.sep)
elif self.sep_style == SeparatorStyle.LLAMA_3:
if self.tokenizer is None:
self.tokenizer = AutoTokenizer.from_pretrained(
PathManager.get_local_path(
"manifold://xr_core_ai_asl_llm/tree/users/shenx/models/Cambrian-Llama3_1-8b-t576/"
)
)
chat_template_messages = [{"role": "system", "content": self.system}]
for role, message in messages:
if message:
if type(message) is tuple:
message, images = message
message = "<image>" * len(images) + message
chat_template_messages.append({"role": role, "content": message})
# print("chat", chat_template_messages, flush=True)
return self.tokenizer.apply_chat_template(
chat_template_messages, tokenize=False, add_generation_prompt=True
)
elif self.sep_style == SeparatorStyle.LLAMA_3_1:
if self.tokenizer is None:
self.tokenizer = AutoTokenizer.from_pretrained(
PathManager.get_local_path(
"manifold://xr_core_ai_asl_llm/tree/users/shenx/models/Cambrian-Llama3_1-8b-t576/"
)
)
chat_template_messages = [{"role": "system", "content": self.system}]
for role, message in messages:
if message:
if type(message) is tuple:
message, images = message
message = "<image>" * len(images) + message
chat_template_messages.append({"role": role, "content": message})
return self.tokenizer.apply_chat_template(
chat_template_messages, tokenize=False, add_generation_prompt=False
)
elif (
# self.sep_style == SeparatorStyle.LLAMA_3 or
self.sep_style
== SeparatorStyle.LLAMA_3_2
):
wrap_sys = lambda msg: (
f"<|begin_of_text|><|start_header_id|>system<|end_header_id|>{msg}<|eot_id|>"
if len(msg) > 0
else msg
)
wrap_inst_user = (
lambda msg: f"<|start_header_id|>user<|end_header_id|>{msg}<|eot_id|>"
)
wrap_inst_assistant = (
lambda msg: f"<|start_header_id|>assistant<|end_header_id|>{msg}<|eot_id|>"
)
ret = ""
for i, (role, message) in enumerate(messages):
if i == 0:
assert message, "first message should not be none"
assert role == self.roles[0], "first message should come from user"
if message:
if type(message) is tuple:
message, _, _ = message
if i == 0:
ret += wrap_sys(self.system)
if i % 2 == 0:
message = wrap_inst_user(message)
ret += message
else:
message = wrap_inst_assistant(message)
ret += message
else:
ret += ""
ret += "<|start_header_id|>assistant<|end_header_id|>"
elif self.sep_style == SeparatorStyle.PLAIN:
seps = [self.sep, self.sep2]
ret = self.system
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message, _, _ = message
ret += message + seps[i % 2]
else:
ret += ""
else:
raise ValueError(f"Invalid style: {self.sep_style}")
return ret
def append_message(self, role, message):
self.messages.append([role, message])
def process_image(
self,
image,
image_process_mode,
return_pil=False,
image_format="PNG",
max_len=1344,
min_len=672,
):
if image_process_mode == "Pad":
def expand2square(pil_img, background_color=(122, 116, 104)):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
image = expand2square(image)
elif image_process_mode in ["Default", "Crop"]:
pass
elif image_process_mode == "Resize":
image = image.resize((336, 336))
else:
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
if max(image.size) > max_len:
max_hw, min_hw = max(image.size), min(image.size)
aspect_ratio = max_hw / min_hw
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
longest_edge = int(shortest_edge * aspect_ratio)
W, H = image.size
if H > W:
H, W = longest_edge, shortest_edge
else:
H, W = shortest_edge, longest_edge
image = image.resize((W, H))
if return_pil:
return image
else:
buffered = BytesIO()
image.save(buffered, format=image_format)
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
return img_b64_str
def get_images(self, return_pil=False):
images = []
for i, (role, msg) in enumerate(self.messages[self.offset :]):
if i % 2 == 0:
if type(msg) is tuple:
msg, image, image_process_mode = msg
image = self.process_image(
image, image_process_mode, return_pil=return_pil
)
images.append(image)
return images
def to_gradio_chatbot(self):
ret = []
for i, (role, msg) in enumerate(self.messages[self.offset :]):
if i % 2 == 0:
if type(msg) is tuple:
msg, image, image_process_mode = msg
img_b64_str = self.process_image(
image, "Default", return_pil=False, image_format="JPEG"
)
img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" alt="user upload image" />'
msg = img_str + msg.replace("<image>", "").strip()
ret.append([msg, None])
else:
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def copy(self):
return Conversation(
system=self.system,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
version=self.version,
)
def dict(self):
if len(self.get_images()) > 0:
return {
"system": self.system,
"roles": self.roles,
"messages": [
[x, y[0] if type(y) is tuple else y] for x, y in self.messages
],
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
}
return {
"system": self.system,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
}
conv_vicuna_v0 = Conversation(
system="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
# pyre-fixme[6]: For 2nd argument expected `List[str]` but got `Tuple[str, str]`.
roles=("Human", "Assistant"),
# pyre-fixme[6]: For 3rd argument expected `List[List[str]]` but got
# `Tuple[Tuple[str, str], Tuple[str, str]]`.
messages=(
(
"Human",
"What are the key differences between renewable and non-renewable energy sources?",
),
(
"Assistant",
"Renewable energy sources are those that can be replenished naturally in a relatively "
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
"renewable and non-renewable energy sources:\n"
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
"energy sources are finite and will eventually run out.\n"
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
"and other negative effects.\n"
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
"have lower operational costs than non-renewable sources.\n"
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
"locations than non-renewable sources.\n"
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n",
),
),
offset=2,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
conv_vicuna_v1 = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
# pyre-fixme[6]: For 2nd argument expected `List[str]` but got `Tuple[str, str]`.
roles=("USER", "ASSISTANT"),
version="v1",
# pyre-fixme[6]: For 4th argument expected `List[List[str]]` but got `Tuple[]`.
messages=(),
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
)
conv_llama_2 = Conversation(
system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
# pyre-fixme[6]: For 2nd argument expected `List[str]` but got `Tuple[str, str]`.
roles=("USER", "ASSISTANT"),
version="llama_v2",
# pyre-fixme[6]: For 4th argument expected `List[List[str]]` but got `Tuple[]`.
messages=(),
offset=0,
sep_style=SeparatorStyle.LLAMA_2,
sep="<s>",
sep2="</s>",
)
conv_llava_llama_2 = Conversation(
system="You are a helpful language and vision assistant. "
"You are able to understand the visual content that the user provides, "
"and assist the user with a variety of tasks using natural language.",
# pyre-fixme[6]: For 2nd argument expected `List[str]` but got `Tuple[str, str]`.
roles=("USER", "ASSISTANT"),
version="llama_v2",
# pyre-fixme[6]: For 4th argument expected `List[List[str]]` but got `Tuple[]`.
messages=(),
offset=0,
sep_style=SeparatorStyle.LLAMA_2,
sep="<s>",
sep2="</s>",
)
conv_mpt = Conversation(
system="""<|im_start|>system
A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
# pyre-fixme[6]: For 2nd argument expected `List[str]` but got `Tuple[str, str]`.
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
version="mpt",
# pyre-fixme[6]: For 4th argument expected `List[List[str]]` but got `Tuple[]`.
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="<|im_end|>",
)
conv_llava_plain = Conversation(
system="",
# pyre-fixme[6]: For 2nd argument expected `List[str]` but got `Tuple[str, str]`.
roles=("", ""),
# pyre-fixme[6]: For 3rd argument expected `List[List[str]]` but got `Tuple[]`.
messages=(),
offset=0,
sep_style=SeparatorStyle.PLAIN,
sep="\n",
version="plain",
)
conv_llava_v0 = Conversation(
system="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
# pyre-fixme[6]: For 2nd argument expected `List[str]` but got `Tuple[str, str]`.
roles=("Human", "Assistant"),
# pyre-fixme[6]: For 3rd argument expected `List[List[str]]` but got `Tuple[]`.
messages=(),
offset=0,
sep_style=SeparatorStyle.SINGLE,
sep="###",
)
conv_llava_v0_mmtag = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
"The visual content will be provided with the following format: <Image>visual content</Image>.",
# pyre-fixme[6]: For 2nd argument expected `List[str]` but got `Tuple[str, str]`.
roles=("Human", "Assistant"),
# pyre-fixme[6]: For 3rd argument expected `List[List[str]]` but got `Tuple[]`.
messages=(),
offset=0,
sep_style=SeparatorStyle.SINGLE,
sep="###",
version="v0_mmtag",
)
conv_llava_v1 = Conversation(
system="A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
# pyre-fixme[6]: For 2nd argument expected `List[str]` but got `Tuple[str, str]`.
roles=("USER", "ASSISTANT"),
version="v1",
# pyre-fixme[6]: For 4th argument expected `List[List[str]]` but got `Tuple[]`.
messages=(),
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
)
conv_llava_v1_mmtag = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
"The visual content will be provided with the following format: <Image>visual content</Image>.",
# pyre-fixme[6]: For 2nd argument expected `List[str]` but got `Tuple[str, str]`.
roles=("USER", "ASSISTANT"),
# pyre-fixme[6]: For 3rd argument expected `List[List[str]]` but got `Tuple[]`.
messages=(),
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
version="v1_mmtag",
)
conv_mistral_instruct = Conversation(
system="",
# pyre-fixme[6]: For 2nd argument expected `List[str]` but got `Tuple[str, str]`.
roles=("USER", "ASSISTANT"),
version="llama_v2",
# pyre-fixme[6]: For 4th argument expected `List[List[str]]` but got `Tuple[]`.
messages=(),
offset=0,
sep_style=SeparatorStyle.LLAMA_2,
sep="",
sep2="</s>",
)
conv_chatml_direct = Conversation(
system="""<|im_start|>system
Answer the questions.""",
# pyre-fixme[6]: For 2nd argument expected `List[str]` but got `Tuple[str, str]`.
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
version="mpt",
# pyre-fixme[6]: For 4th argument expected `List[List[str]]` but got `Tuple[]`.
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="<|im_end|>",
)
# llama3_tokenizer = AutoTokenizer.from_pretrained(
# PathManager.get_local_path(
# "./checkpoint/"
# )
# )
conv_llama3 = Conversation(
system="""As a multimodal AI, you have the ability to process and analyze images. Whenever an image is present in the conversation, very carefully examine it and consider its content when formulating your response. You should give concise responses to very simple questions, but provide thorough responses to more complex and open-ended questions.""",
# pyre-fixme[6]: For 2nd argument expected `List[str]` but got `Tuple[str, str]`.
roles=("user", "assistant"),
version="llama3",
# pyre-fixme[6]: For 4th argument expected `List[List[str]]` but got `Tuple[]`.
messages=(),
offset=0,
sep_style=SeparatorStyle.LLAMA_3,
# tokenizer=llama3_tokenizer,
sep="<|eot_id|>",
)
conv_llama3_2 = Conversation(
system="""You are a helpful assistant.""",
# pyre-fixme[6]: For 2nd argument expected `List[str]` but got `Tuple[str, str]`.
roles=("user", "assistant"),
version="llama3_2",
# pyre-fixme[6]: For 4th argument expected `List[List[str]]` but got `Tuple[]`.
messages=(),
offset=0,
sep_style=SeparatorStyle.LLAMA_3_2,
sep="<|eot_id|>",
)
conv_phi3_instruct = Conversation(
system="""<|system|>\nYou are a helpful AI assistant.""",
# pyre-fixme[6]: For 2nd argument expected `List[str]` but got `Tuple[str, str]`.
roles=("\n<|user|>\n", "\n<|assistant|>\n"),
version="phi3",
# pyre-fixme[6]: For 4th argument expected `List[List[str]]` but got `Tuple[]`.
messages=(),
offset=0,
sep_style=SeparatorStyle.MPT,
sep="<|end|>",
)
conv_qwen = Conversation(
system="""<|im_start|>system
You are a helpful assistant.""",
# pyre-fixme[6]: For 2nd argument expected `List[str]` but got `Tuple[str, str]`.
roles=("<|im_start|>user", "<|im_start|>assistant"),
version="qwen",
messages=[],
offset=0,
sep_style=SeparatorStyle.CHATML,
sep="<|im_end|>",
)
default_conversation = conv_vicuna_v1
conv_templates = {
"default": conv_vicuna_v0,
"v0": conv_vicuna_v0,
"v1": conv_vicuna_v1,
"vicuna_v1": conv_vicuna_v1,
"llama_2": conv_llama_2,
"mistral_instruct": conv_mistral_instruct,
"chatml_direct": conv_chatml_direct,
"mistral_direct": conv_chatml_direct,
"plain": conv_llava_plain,
"v0_plain": conv_llava_plain,
"llava_v0": conv_llava_v0,
"v0_mmtag": conv_llava_v0_mmtag,
"llava_v1": conv_llava_v1,
"v1_mmtag": conv_llava_v1_mmtag,
"llava_llama_2": conv_llava_llama_2,
"mpt": conv_mpt,
"llama3": conv_llama3,
"llama3_2": conv_llama3_2,
"phi3": conv_phi3_instruct,
"qwen": conv_qwen,
}
if __name__ == "__main__":
print(default_conversation.get_prompt())
|