File size: 22,078 Bytes
85efb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss

from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    LlamaConfig,
    LlamaForCausalLM,
    LlamaModel,
)
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation.utils import GenerateOutput

from transformers.modeling_attn_mask_utils import (
    _prepare_4d_causal_attention_mask,
    _prepare_4d_causal_attention_mask_for_sdpa,
)

from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
)
from transformers.utils import logging

from ..cambrian_arch import CambrianMetaForCausalLM, CambrianMetaModel

IS_XLA_AVAILABLE = False

logger = logging.get_logger(__name__)


class CambrianConfig(LlamaConfig):
    model_type = "cambrian_llama"

    debug = "debug"


class CambrianLlamaModel(CambrianMetaModel, LlamaModel):
    config_class = CambrianConfig

    def __init__(self, config: LlamaConfig):
        super(CambrianLlamaModel, self).__init__(config)

    def forward(
        self,
        # pyre-fixme[9]: input_ids has type `LongTensor`; used as `None`.
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        vision_tower_aux_feature_list: Optional[List[torch.FloatTensor]] = None,
        vision_tower_aux_attention_masks_list: Optional[List[torch.Tensor]] = None,
        final_vision_feature_size: Optional[List[tuple]] = None,
        global_context_feature: Optional[torch.Tensor] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:

        output_attentions = (
            output_attentions
            if output_attentions is not None
            # pyre-fixme[16]: `CambrianLlamaModel` has no attribute `config`.
            else self.config.output_attentions
        )

        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time"
            )
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape[:2]
        elif inputs_embeds is not None:
            batch_size, seq_length = inputs_embeds.shape[:2]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        # pyre-fixme[16]: `CambrianLlamaModel` has no attribute
        #  `gradient_checkpointing`.
        # pyre-fixme[16]: `CambrianLlamaModel` has no attribute `training`.
        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        past_key_values_length = 0
        if use_cache:
            use_legacy_cache = not isinstance(past_key_values, Cache)
            if use_legacy_cache:
                # pyre-fixme[9]: past_key_values has type
                #  `Optional[List[FloatTensor]]`; used as `DynamicCache`.
                # pyre-fixme[6]: For 1st argument expected
                #  `Optional[Tuple[Tuple[FloatTensor]]]` but got
                #  `Optional[List[FloatTensor]]`.
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            # pyre-fixme[16]: `Optional` has no attribute `get_usable_length`.
            past_key_values_length = past_key_values.get_usable_length(seq_length)

        if position_ids is None:
            # pyre-fixme[16]: `Optional` has no attribute `device`.
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length,
                seq_length + past_key_values_length,
                dtype=torch.long,
                device=device,
            )
            position_ids = position_ids.unsqueeze(0)

        if inputs_embeds is None:
            # pyre-fixme[16]: `CambrianLlamaModel` has no attribute `embed_tokens`.
            inputs_embeds = self.embed_tokens(input_ids)

        # pyre-fixme[16]: `CambrianLlamaModel` has no attribute
        #  `_use_flash_attention_2`.
        self._use_flash_attention_2 = getattr(self, "_use_flash_attention_2", False)
        # pyre-fixme[16]: `CambrianLlamaModel` has no attribute `_use_sdpa`.
        self._use_sdpa = getattr(self, "_use_sdpa", True)
        if self._use_flash_attention_2:
            # 2d mask is passed through the layers
            attention_mask = (
                attention_mask
                if (attention_mask is not None and 0 in attention_mask)
                else None
            )
        elif self._use_sdpa and not output_attentions:
            # output_attentions=True can not be supported when using SDPA, and we fall back on
            # the manual implementation that requires a 4D causal mask in all cases.
            attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
                attention_mask,
                (batch_size, seq_length),
                inputs_embeds,
                past_key_values_length,
            )
        else:
            # 4d mask is passed through the layers
            attention_mask = _prepare_4d_causal_attention_mask(
                attention_mask,
                (batch_size, seq_length),
                inputs_embeds,
                past_key_values_length,
            )

        # embed positions
        hidden_states = inputs_embeds
        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        # pyre-fixme[16]: `CambrianLlamaModel` has no attribute `layers`.
        for i, decoder_layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                # pyre-fixme[16]: `CambrianLlamaModel` has no attribute
                #  `_gradient_checkpointing_func`.
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_value=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        # pyre-fixme[16]: `CambrianLlamaModel` has no attribute `norm`.
        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        next_cache = None
        if use_cache:
            next_cache = (
                next_decoder_cache.to_legacy_cache()
                # pyre-fixme[61]: `use_legacy_cache` is undefined, or not always
                #  defined.
                if use_legacy_cache
                else next_decoder_cache
            )
        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
                if v is not None
            )
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )


class CambrianLlamaForCausalLM(LlamaForCausalLM, CambrianMetaForCausalLM):
    config_class = CambrianConfig

    def __init__(self, config):
        super(LlamaForCausalLM, self).__init__(config)

        self.model = CambrianLlamaModel(config)
        self.pretraining_tp = config.pretraining_tp
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model

    def forward(
        self,
        # pyre-fixme[9]: input_ids has type `LongTensor`; used as `None`.
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        image_aux_attention_masks_list: Optional[List[torch.Tensor]] = None,
        image_sizes: Optional[List[List[int]]] = None,
        return_dict: Optional[bool] = None,
        cache_position=None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:

        final_vision_feature_size = None

        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels,
                vision_tower_aux_feature_list,
                vision_tower_aux_attention_masks_list,
                final_vision_feature_size,
                global_context_feature,
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                labels,
                images,
                image_aux_attention_masks_list,
                image_sizes,
            )
        if IS_XLA_AVAILABLE:
            # Very Important for TorchXLA
            # self.model.gradient_checkpointing = False

            # pyre-fixme[21]: Could not find module `torch_xla.utils.checkpoint`.
            from torch_xla.utils.checkpoint import checkpoint

            # self.model.gradient_checkpointing = True
            # pyre-fixme[16]: `CambrianLlamaModel` has no attribute
            #  `_gradient_checkpointing_func`.
            self.model._gradient_checkpointing_func = checkpoint

        output_attentions = (
            output_attentions
            if output_attentions is not None
            # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute `config`.
            else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # training
        if IS_XLA_AVAILABLE:
            # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
            # pyre-fixme[29]: `CambrianLlamaModel` is not a function.
            outputs = self.model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                # pyre-fixme[61]: `vision_tower_aux_feature_list` is undefined, or
                #  not always defined.
                vision_tower_aux_feature_list=vision_tower_aux_feature_list,
                # pyre-fixme[61]: `vision_tower_aux_attention_masks_list` is
                #  undefined, or not always defined.
                vision_tower_aux_attention_masks_list=vision_tower_aux_attention_masks_list,
                final_vision_feature_size=final_vision_feature_size,
                # pyre-fixme[61]: `global_context_feature` is undefined, or not
                #  always defined.
                global_context_feature=global_context_feature,
            )

        # inference
        else:
            if hasattr(self, "vision_tower_aux_feature_list"):
                # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
                # pyre-fixme[29]: `CambrianLlamaModel` is not a function.
                outputs = self.model(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_values=past_key_values,
                    inputs_embeds=inputs_embeds,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                    return_dict=return_dict,
                    vision_tower_aux_feature_list=(
                        # pyre-fixme[61]: `vision_tower_aux_feature_list` is
                        #  undefined, or not always defined.
                        vision_tower_aux_feature_list
                        if inputs_embeds is None
                        # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no
                        #  attribute `vision_tower_aux_feature_list`.
                        else self.vision_tower_aux_feature_list
                    ),
                    vision_tower_aux_attention_masks_list=(
                        # pyre-fixme[61]: `vision_tower_aux_attention_masks_list` is
                        #  undefined, or not always defined.
                        vision_tower_aux_attention_masks_list
                        if inputs_embeds is None
                        # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no
                        #  attribute `vision_tower_aux_attention_masks_list`.
                        else self.vision_tower_aux_attention_masks_list
                    ),
                    final_vision_feature_size=(
                        final_vision_feature_size
                        if inputs_embeds is None
                        # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no
                        #  attribute `final_vision_feature_size`.
                        else self.final_vision_feature_size
                    ),
                    global_context_feature=(
                        # pyre-fixme[61]: `global_context_feature` is undefined, or
                        #  not always defined.
                        global_context_feature
                        if inputs_embeds is None
                        # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no
                        #  attribute `global_context_feature`.
                        else self.global_context_feature
                    ),
                )
            else:
                # pyre-fixme[29]: `CambrianLlamaModel` is not a function.
                outputs = self.model(
                    input_ids=input_ids,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_values=past_key_values,
                    inputs_embeds=inputs_embeds,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                    output_hidden_states=output_hidden_states,
                    return_dict=return_dict,
                    # final_vision_feature_size=final_vision_feature_size,
                )

        hidden_states = outputs[0]
        if self.config.pretraining_tp > 1:
            lm_head_slices = self.lm_head.weight.split(
                self.vocab_size // self.config.pretraining_tp, dim=0
            )
            logits = [
                F.linear(hidden_states, lm_head_slices[i])
                for i in range(self.config.pretraining_tp)
            ]
            logits = torch.cat(logits, dim=-1)
        else:
            logits = self.lm_head(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
        images: Optional[torch.Tensor] = None,
        image_sizes: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:
        position_ids = kwargs.pop("position_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)
        if "inputs_embeds" in kwargs:
            raise NotImplementedError("`inputs_embeds` is not supported")

        if images is not None:
            (
                inputs,
                position_ids,
                attention_mask,
                _,
                inputs_embeds,
                _,
                vision_tower_aux_feature_list,
                vision_tower_aux_attention_masks_list,
                final_vision_feature_size,
                global_context_feature,
            ) = self.prepare_inputs_labels_for_multimodal(
                inputs,
                position_ids,
                attention_mask,
                None,
                None,
                images,
                image_sizes=image_sizes,
            )
            # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute
            #  `vision_tower_aux_feature_list`.
            self.vision_tower_aux_feature_list = vision_tower_aux_feature_list
            # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute
            #  `vision_tower_aux_attention_masks_list`.
            self.vision_tower_aux_attention_masks_list = (
                vision_tower_aux_attention_masks_list
            )
            # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute
            #  `final_vision_feature_size`.
            self.final_vision_feature_size = final_vision_feature_size
            # pyre-fixme[16]: `CambrianLlamaForCausalLM` has no attribute
            #  `global_context_feature`.
            self.global_context_feature = global_context_feature
        else:
            inputs_embeds = self.get_model().embed_tokens(inputs)

        # pyre-fixme[16]: `LlamaForCausalLM` has no attribute `generate`.
        return super().generate(
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            **kwargs,
        )

    def prepare_inputs_for_generation(
        self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
    ):
        images = kwargs.pop("images", None)
        image_sizes = kwargs.pop("image_sizes", None)
        inputs = super().prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            **kwargs,
        )
        if images is not None:
            inputs["images"] = images
        if image_sizes is not None:
            inputs["image_sizes"] = image_sizes
        return inputs


AutoConfig.register("cambrian_llama", CambrianConfig)
AutoModelForCausalLM.register(CambrianConfig, CambrianLlamaForCausalLM)