File size: 5,135 Bytes
85efb5b
 
 
 
 
 
 
 
 
 
 
 
a5ca081
85efb5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import torch
import torch.nn.functional as F

from transformers import AutoImageProcessor, Dinov2Config, Dinov2Model

from .base_encoder import BaseVisionTower, ProcessorWrapper


class DinoVisionTower(BaseVisionTower):
    def __init__(self, vision_tower, args, delay_load=False):
        super(DinoVisionTower, self).__init__(vision_tower, args, delay_load)

        model_path = "google/siglip-so400m-patch14-384"
        base_model_name, res, interp = model_path, 378, 576
        self._vision_tower_name = vision_tower
        self.vision_tower_name = base_model_name
        self._image_size = res
        self._interp_size = interp
        self._patch_size = 14  # default patch size

        if not self.delay_load:
            self.load_model()
        else:
            self.cfg_only = Dinov2Config.from_pretrained(self.vision_tower_name)

    def load_model(self, device_map=None):

        self.vision_tower = Dinov2Model.from_pretrained(self.vision_tower_name)
        """ValueError: Dinov2Model does not support `device_map='auto'`. To implement support, the model class needs to implement the `_no_split_modules` attribute."""
        self.vision_tower._no_split_modules = ["Dinov2SwiGLUFFN"]

        _image_size = self.vision_tower.config.image_size
        if self._image_size is None:
            self._image_size = _image_size

        # increase shortest edge to prevent edge case crops
        default_shortest_ratio = 8 / 7  # 224/256
        # shortest_edge = int(default_shortest_ratio * self._image_size)
        shortest_edge = self._image_size

        processor = AutoImageProcessor.from_pretrained(
            self.vision_tower_name,
            crop_size=dict(height=self._image_size, width=self._image_size),
            size=dict(shortest_edge=shortest_edge),
        )
        self.image_processor = processor

        # Assign the output channels of the projection convolution as the hidden size
        self._hidden_size = (
            self.vision_tower.embeddings.patch_embeddings.projection.out_channels
        )
        # Assign the first value of the stride of the projection convolution as the patch size
        self._patch_size = (
            self.vision_tower.embeddings.patch_embeddings.projection.stride[0]
        )

        # print(self._hidden_size, self._patch_size)

        self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower)
        self.is_loaded = True

    @property
    def image_size(self):
        return self._image_size

    def feature_select(self, outputs):
        sequence_output = outputs[
            "last_hidden_state"
        ]  # batch_size, sequence_length, hidden_size

        if self.select_feature == "cls_patch":
            image_features = sequence_output
        elif self.select_feature == "patch":
            image_features = sequence_output[:, 1:]
        elif self.select_feature == "cls":
            image_features = sequence_output[:, 0]
        else:
            raise ValueError(f"Unexpected select feature: {self.select_feature}")
        return image_features

    def interpolate(self, image_features):
        if self._interp_size is None:
            return image_features

        b, num_tokens, dim = image_features.shape

        if num_tokens != self.num_patches:
            target_h = target_w = int(self._interp_size**0.5)
            h = w = int(num_tokens**0.5)

            image_features = image_features.view(b, h, w, dim)
            image_features = image_features.permute(0, 3, 1, 2).contiguous()

            image_features = F.interpolate(
                image_features.to(torch.float32),
                size=(target_h, target_w),
                mode="bilinear",
                align_corners=False,
            ).to(image_features.dtype)

            # Permute the dimensions back to (b, target_h, target_w, dim)
            image_features = image_features.permute(0, 2, 3, 1).contiguous()

            # Flatten the spatial dimensions (target_h, target_w) into a single dimension
            image_features = image_features.flatten(1, 2)

        return image_features

    def _forward(self, images):
        # logger.warning(f"images shape: {images.shape}")
        with torch.set_grad_enabled(self.unfreeze_mm_vision_tower):
            image_forward_outs = self.vision_tower.forward(
                images.to(device=self.device, dtype=self.dtype)
            )
            # logger.warning(f"image_forward_outs shape: {image_forward_outs['last_hidden_state'].shape}")
            image_features = self.feature_select(image_forward_outs).to(images.dtype)
            # logger.warning(f"image_features shape: {image_features.shape}")
            interp_features = self.interpolate(image_features)
            # logger.warning(f"interp_features shape: {interp_features.shape}")
            return interp_features

    @property
    def num_patches_per_side(self):
        return int(self.num_patches**0.5)

    @property
    def num_patches(self):
        if self._interp_size is None:
            return (self._image_size // self._patch_size) ** 2
        else:
            return self._interp_size