Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn.functional as F | |
from transformers import SiglipImageProcessor, SiglipVisionConfig, SiglipVisionModel | |
from .base_encoder import BaseVisionTower, ProcessorWrapper | |
class SiglipVisionTower(BaseVisionTower): | |
def __init__(self, vision_tower_name, args, delay_load=False): | |
super(SiglipVisionTower, self).__init__(vision_tower_name, args, delay_load) | |
model_path = "./checkpoints/siglip-so400m-patch14-384" | |
base_model_name, res, interp = model_path, 384, 576 | |
self.vision_tower_name = base_model_name | |
self._image_size = res if res is not None else 512 | |
self._interp_size = interp | |
if not self.delay_load: | |
self.load_model() | |
elif self.unfreeze_mm_vision_tower: | |
self.load_model() | |
else: | |
self._hidden_size = 1152 | |
def load_model(self, device_map=None): | |
self.vision_model = "siglip" | |
# clip_model, processor = create_model_from_pretrained(self.vision_tower_name) | |
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name) | |
# self.vision_tower = clip_model.visual.trunk | |
self.vision_tower.output_tokens = True | |
self._hidden_size = self.vision_tower.config.hidden_size | |
self._image_size = self.vision_tower.config.image_size | |
self._patch_size = self.vision_tower.config.patch_size | |
self.image_processor = SiglipImageProcessor.from_pretrained( | |
self.vision_tower_name | |
) | |
self.vision_tower.requires_grad_(self.unfreeze_mm_vision_tower) | |
self.is_loaded = True | |
def interpolate(self, image_features): | |
if self._interp_size is None: | |
return image_features | |
b, num_tokens, dim = image_features.shape | |
if num_tokens != self.num_patches: | |
target_h = target_w = int(self._interp_size**0.5) | |
h = w = int(num_tokens**0.5) | |
image_features = image_features.view(b, h, w, dim) | |
image_features = image_features.permute(0, 3, 1, 2).contiguous() | |
image_features = F.interpolate( | |
image_features.to(torch.float32), | |
size=(target_h, target_w), | |
mode="bilinear", | |
align_corners=False, | |
).to(image_features.dtype) | |
# Permute the dimensions back to (b, target_h, target_w, dim) | |
image_features = image_features.permute(0, 2, 3, 1).contiguous() | |
# Flatten the spatial dimensions (target_h, target_w) into a single dimension | |
image_features = image_features.flatten(1, 2) | |
return image_features | |
def _forward(self, images, interpolate_token=576): | |
with torch.set_grad_enabled(self.unfreeze_mm_vision_tower): | |
image_features = self.vision_tower.forward( | |
images.to(device=self.device, dtype=self.dtype), | |
output_hidden_states=True, | |
).hidden_states[-1] | |
interp_features = self.interpolate(image_features) | |
return interp_features | |