Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import torch | |
from longvu.builder import load_pretrained_model | |
from longvu.constants import ( | |
DEFAULT_IMAGE_TOKEN, | |
IMAGE_TOKEN_INDEX, | |
) | |
from longvu.conversation import conv_templates, SeparatorStyle | |
from longvu.mm_datautils import ( | |
KeywordsStoppingCriteria, | |
process_images, | |
tokenizer_image_token, | |
) | |
from decord import cpu, VideoReader | |
version = "qwen" | |
model_name = "cambrian_qwen" | |
input_model_local_path = "./checkpoints/longvu_qwen" | |
device = "cuda:7" | |
tokenizer, model, image_processor, context_len = load_pretrained_model( | |
input_model_local_path, None, model_name, device=device | |
) | |
model.get_model().config.tokenizer_model_max_length = 8192 | |
model.get_model().config.inference_max_length = 128 | |
model.config.use_cache = True | |
print(model.device) | |
model.eval() | |
video_path = "./examples/video1.mp4" | |
qs = "Describe this video in detail" | |
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1) | |
fps = float(vr.get_avg_fps()) | |
frame_indices = np.array( | |
[ | |
i | |
for i in range( | |
0, | |
len(vr), | |
round(fps), | |
) | |
] | |
) | |
video = [] | |
for frame_index in frame_indices: | |
img = vr[frame_index].asnumpy() | |
video.append(img) | |
video = np.stack(video) | |
image_sizes = [video[0].shape[:2]] | |
video = process_images(video, image_processor, model.config) | |
video = [item.unsqueeze(0) for item in video] | |
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs | |
conv = conv_templates[version].copy() | |
conv.append_message(conv.roles[0], qs) | |
conv.append_message(conv.roles[1], None) | |
prompt = conv.get_prompt() | |
input_ids = ( | |
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt") | |
.unsqueeze(0) | |
.to(model.device) | |
) | |
if "llama3" in version: | |
input_ids = input_ids[0][1:].unsqueeze(0) # remove bos | |
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 | |
keywords = [stop_str] | |
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) | |
with torch.inference_mode(): | |
output_ids = model.generate( | |
input_ids, | |
images=video, | |
image_sizes=image_sizes, | |
do_sample=False, | |
temperature=0.2, | |
max_new_tokens=128, | |
use_cache=True, | |
stopping_criteria=[stopping_criteria], | |
) | |
if isinstance(output_ids, tuple): | |
output_ids = output_ids[0] | |
pred = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip() | |
print("pred: ", pred, flush=True) | |