Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023 Haotian Liu | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# pyre-unsafe | |
import os | |
import shutil | |
import warnings | |
import torch | |
from longvu.constants import ( | |
DEFAULT_IM_END_TOKEN, | |
DEFAULT_IM_START_TOKEN, | |
DEFAULT_IMAGE_PATCH_TOKEN, | |
) | |
from longvu.language_model.cambrian_llama import CambrianLlamaForCausalLM | |
from longvu.language_model.cambrian_qwen import CambrianQwenForCausalLM | |
from transformers import ( | |
AutoConfig, | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
BitsAndBytesConfig, | |
) | |
def load_pretrained_model( | |
model_path, | |
model_base, | |
model_name, | |
load_8bit=False, | |
load_4bit=False, | |
device_map="auto", | |
device="cuda", | |
use_flash_attn=False, | |
model_args=None, | |
**kwargs, | |
): | |
kwargs = {"device_map": device_map, **kwargs} | |
if device != "cuda": | |
kwargs["device_map"] = {"": device} | |
if load_8bit: | |
kwargs["load_in_8bit"] = True | |
elif load_4bit: | |
kwargs["load_in_4bit"] = True | |
kwargs["quantization_config"] = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
) | |
else: | |
kwargs["torch_dtype"] = torch.float16 | |
if use_flash_attn: | |
kwargs["attn_implementation"] = "flash_attention_2" | |
if "cambrian" in model_name.lower(): | |
# Load Cambrian model | |
if "lora" in model_name.lower() and model_base is None: | |
warnings.warn( | |
"There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged." | |
) | |
if "lora" in model_name.lower() and model_base is not None: | |
# pyre-fixme[21]: Could not find module | |
# `core_ai.llava.language_model.cambrian_llama`. | |
from core_ai.llava.language_model.cambrian_llama import CambrianConfig | |
lora_cfg_pretrained = CambrianConfig.from_pretrained(model_path) | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
print("Loading Cambrian from base model...") | |
model = CambrianLlamaForCausalLM.from_pretrained( | |
model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs | |
) | |
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features | |
if model.lm_head.weight.shape[0] != token_num: | |
model.lm_head.weight = torch.nn.Parameter( | |
torch.empty( | |
token_num, tokem_dim, device=model.device, dtype=model.dtype | |
) | |
) | |
model.model.embed_tokens.weight = torch.nn.Parameter( | |
torch.empty( | |
token_num, tokem_dim, device=model.device, dtype=model.dtype | |
) | |
) | |
print("Loading additional Cambrian weights...") | |
if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")): | |
non_lora_trainables = torch.load( | |
os.path.join(model_path, "non_lora_trainables.bin"), | |
map_location="cpu", | |
) | |
else: | |
# this is probably from HF Hub | |
from huggingface_hub import hf_hub_download | |
def load_from_hf(repo_id, filename, subfolder=None): | |
cache_file = hf_hub_download( | |
repo_id=repo_id, filename=filename, subfolder=subfolder | |
) | |
return torch.load(cache_file, map_location="cpu") | |
non_lora_trainables = load_from_hf( | |
model_path, "non_lora_trainables.bin" | |
) | |
non_lora_trainables = { | |
(k[11:] if k.startswith("base_model.") else k): v | |
for k, v in non_lora_trainables.items() | |
} | |
if any(k.startswith("model.model.") for k in non_lora_trainables): | |
non_lora_trainables = { | |
(k[6:] if k.startswith("model.") else k): v | |
for k, v in non_lora_trainables.items() | |
} | |
model.load_state_dict(non_lora_trainables, strict=False) | |
from peft import PeftModel | |
print("Loading LoRA weights...") | |
model = PeftModel.from_pretrained(model, model_path) | |
print("Merging LoRA weights...") | |
model = model.merge_and_unload() | |
print("Model is loaded...") | |
elif model_base is not None: | |
# this may be mm projector only | |
print(f"Loading Cambrian-1 from base model... {model_base}") | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
model = CambrianLlamaForCausalLM.from_pretrained( | |
model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs | |
) | |
mm_projector_weights = torch.load( | |
os.path.join(model_path, "mm_projector.bin"), map_location="cpu" | |
) | |
mm_projector_weights = { | |
k: v.to(torch.float16) for k, v in mm_projector_weights.items() | |
} | |
model.load_state_dict(mm_projector_weights, strict=False) | |
else: | |
if "qwen" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
model = CambrianQwenForCausalLM.from_pretrained( | |
model_path, low_cpu_mem_usage=True, **kwargs | |
) | |
else: | |
print(f"Loading Cambrian from {model_path}") | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
model = CambrianLlamaForCausalLM.from_pretrained( | |
model_path, low_cpu_mem_usage=True, **kwargs | |
) | |
else: | |
# Load language model | |
if model_base is not None: | |
# PEFT model | |
from peft import PeftModel | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_base, low_cpu_mem_usage=True, **kwargs | |
) | |
print(f"Loading LoRA weights from {model_path}") | |
model = PeftModel.from_pretrained(model, model_path) | |
print(f"Merging weights") | |
model = model.merge_and_unload() | |
print("Convert to FP16...") | |
model.to(torch.float16) | |
else: | |
use_fast = False | |
if "mpt" in model_name.lower(): | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs | |
) | |
else: | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_path, low_cpu_mem_usage=True, **kwargs | |
) | |
image_processor = None | |
if "llava" in model_name.lower(): | |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | |
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) | |
if mm_use_im_patch_token: | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
if mm_use_im_start_end: | |
tokenizer.add_tokens( | |
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True | |
) | |
model.resize_token_embeddings(len(tokenizer)) | |
vision_tower = model.get_vision_tower() | |
if not vision_tower.is_loaded: | |
try: | |
vision_tower.load_model(device_map=device_map) | |
except ValueError: | |
# ClipVisionTower doesn't support loading with device_map 'auto' | |
vision_tower.load_model() | |
vision_tower.to(device="cuda", dtype=torch.float16) | |
if device_map != "auto": | |
vision_tower.to(device=device_map, dtype=torch.float16) | |
image_processor = vision_tower.image_processor | |
elif "cambrian" in model_name.lower(): | |
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) | |
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) | |
if mm_use_im_patch_token: | |
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) | |
if mm_use_im_start_end: | |
tokenizer.add_tokens( | |
[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True | |
) | |
model.resize_token_embeddings(len(tokenizer)) | |
vision_tower_aux_list = model.get_vision_tower_aux_list() | |
for vision_tower_aux in vision_tower_aux_list: | |
if not vision_tower_aux.is_loaded: | |
vision_tower_aux.load_model(device_map=device_map) | |
vision_tower_aux.to(device=device, dtype=torch.float16) | |
image_processor = [ | |
vision_tower_aux.image_processor | |
for vision_tower_aux in vision_tower_aux_list | |
] | |
if hasattr(model.config, "max_sequence_length"): | |
context_len = model.config.max_sequence_length | |
else: | |
context_len = 2048 | |
return tokenizer, model, image_processor, context_len | |