import ast import base64 import math from io import BytesIO import torch from longvu.constants import IMAGE_TOKEN_INDEX from PIL import Image from transformers import StoppingCriteria def select_best_resolution(original_size, possible_resolutions): """ Selects the best resolution from a list of possible resolutions based on the original size. Args: original_size (tuple): The original size of the image in the format (width, height). possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. Returns: tuple: The best fit resolution in the format (width, height). """ original_width, original_height = original_size best_fit = None max_effective_resolution = 0 min_wasted_resolution = float("inf") for width, height in possible_resolutions: scale = min(width / original_width, height / original_height) downscaled_width, downscaled_height = int(original_width * scale), int( original_height * scale ) effective_resolution = min( downscaled_width * downscaled_height, original_width * original_height ) wasted_resolution = (width * height) - effective_resolution if effective_resolution > max_effective_resolution or ( effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution ): max_effective_resolution = effective_resolution min_wasted_resolution = wasted_resolution best_fit = (width, height) return best_fit def resize_and_pad_image(image, target_resolution): """ Resize and pad an image to a target resolution while maintaining aspect ratio. Args: image (PIL.Image.Image): The input image. target_resolution (tuple): The target resolution (width, height) of the image. Returns: PIL.Image.Image: The resized and padded image. """ original_width, original_height = image.size target_width, target_height = target_resolution scale_w = target_width / original_width scale_h = target_height / original_height if scale_w < scale_h: new_width = target_width new_height = min(math.ceil(original_height * scale_w), target_height) else: new_height = target_height new_width = min(math.ceil(original_width * scale_h), target_width) # Resize the image resized_image = image.resize((new_width, new_height)) new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0)) paste_x = (target_width - new_width) // 2 paste_y = (target_height - new_height) // 2 new_image.paste(resized_image, (paste_x, paste_y)) return new_image def divide_to_patches(image, patch_size): """ Divides an image into patches of a specified size. Args: image (PIL.Image.Image): The input image. patch_size (int): The size of each patch. Returns: list: A list of PIL.Image.Image objects representing the patches. """ patches = [] width, height = image.size for i in range(0, height, patch_size): for j in range(0, width, patch_size): box = (j, i, j + patch_size, i + patch_size) patch = image.crop(box) patches.append(patch) return patches def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size): """ Calculate the shape of the image patch grid after the preprocessing for images of any resolution. Args: image_size (tuple): The size of the input image in the format (width, height). grid_pinpoints (str): A string representation of a list of possible resolutions. patch_size (int): The size of each image patch. Returns: tuple: The shape of the image patch grid in the format (width, height). """ if type(grid_pinpoints) is list: possible_resolutions = grid_pinpoints else: possible_resolutions = ast.literal_eval(grid_pinpoints) width, height = select_best_resolution(image_size, possible_resolutions) return width // patch_size, height // patch_size def process_anyres_image(image, processor, grid_pinpoints): """ Process an image with variable resolutions. Args: image (PIL.Image.Image): The input image to be processed. processor: The image processor object. grid_pinpoints (str): A string representation of a list of possible resolutions. Returns: torch.Tensor: A tensor containing the processed image patches. """ if type(grid_pinpoints) is list: possible_resolutions = grid_pinpoints else: possible_resolutions = ast.literal_eval(grid_pinpoints) best_resolution = select_best_resolution(image.size, possible_resolutions) image_padded = resize_and_pad_image(image, best_resolution) patches = divide_to_patches(image_padded, processor.crop_size["height"]) image_original_resize = image.resize( (processor.size["shortest_edge"], processor.size["shortest_edge"]) ) image_patches = [image_original_resize] + patches image_patches = [ processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches ] return torch.stack(image_patches, dim=0) def load_image_from_base64(image): return Image.open(BytesIO(base64.b64decode(image))) def expand2square(pil_img, background_color): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result # def process_images(images, image_processor, model_cfg): # image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) # new_images = [] # if image_aspect_ratio == 'pad': # for image in images: # image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) # image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] # new_images.append(image) # elif image_aspect_ratio == "anyres": # for image in images: # image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints) # new_images.append(image) # else: # return image_processor(images, return_tensors='pt')['pixel_values'] # if all(x.shape == new_images[0].shape for x in new_images): # new_images = torch.stack(new_images, dim=0) # return new_images # multiple vision towers def process_images(images, image_processor, model_cfg): processor_aux_list = image_processor new_images_aux_list = [] for image in images: image_aux_list = [] for processor_aux in processor_aux_list: image_aux = image if hasattr(processor_aux, "image_mean"): try: target_resolution = processor_aux.crop_size["height"] except: target_resolution = processor_aux.size["height"] image_aux = expand2square( image_aux, tuple(int(x * 255) for x in processor_aux.image_mean) ).resize((target_resolution, target_resolution)) image_aux = processor_aux.preprocess(image_aux, return_tensors="pt")[ "pixel_values" ][0] image_aux_list.append(image_aux) new_images_aux_list.append(image_aux_list) new_images_aux_list = [ list(batch_image_aux) for batch_image_aux in zip(*new_images_aux_list) ] new_images_aux_list = [ torch.stack(image_aux).half().cuda() for image_aux in new_images_aux_list ] return new_images_aux_list def tokenizer_image_token( prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None ): prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("")] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] input_ids = [] offset = 0 if ( len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id ): offset = 1 input_ids.append(prompt_chunks[0][0]) for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): input_ids.extend(x[offset:]) if return_tensors is not None: if return_tensors == "pt": return torch.tensor(input_ids, dtype=torch.long) raise ValueError(f"Unsupported tensor type: {return_tensors}") return input_ids def tokenizer_image_token_llama3( prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None ): prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("")] def insert_separator(X, sep): return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] input_ids = [] for x in insert_separator(prompt_chunks, [image_token_index]): input_ids.extend(x) if return_tensors is not None: if return_tensors == "pt": return torch.tensor(input_ids, dtype=torch.long) raise ValueError(f"Unsupported tensor type: {return_tensors}") return input_ids def get_model_name_from_path(model_path): model_path = model_path.strip("/") model_paths = model_path.split("/") if model_paths[-1].startswith("checkpoint-"): return model_paths[-2] + "_" + model_paths[-1] else: return model_paths[-1] class KeywordsStoppingCriteria(StoppingCriteria): def __init__(self, keywords, tokenizer, input_ids): self.keywords = keywords self.keyword_ids = [] self.max_keyword_len = 0 for keyword in keywords: cur_keyword_ids = tokenizer(keyword).input_ids if ( len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id ): cur_keyword_ids = cur_keyword_ids[1:] if len(cur_keyword_ids) > self.max_keyword_len: self.max_keyword_len = len(cur_keyword_ids) self.keyword_ids.append(torch.tensor(cur_keyword_ids)) self.tokenizer = tokenizer self.start_len = input_ids.shape[1] def call_for_batch( self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs ) -> bool: offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) self.keyword_ids = [ keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids ] for keyword_id in self.keyword_ids: truncated_output_ids = output_ids[0, -keyword_id.shape[0] :] if torch.equal(truncated_output_ids, keyword_id): return True outputs = self.tokenizer.batch_decode( output_ids[:, -offset:], skip_special_tokens=True )[0] for keyword in self.keywords: if keyword in outputs: return True return False def __call__( self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs ) -> bool: outputs = [] for i in range(output_ids.shape[0]): # pyre-fixme[6]: For 1st argument expected `LongTensor` but got `Tensor`. outputs.append(self.call_for_batch(output_ids[i].unsqueeze(0), scores)) return all(outputs)