Spaces:
Runtime error
Runtime error
File size: 2,133 Bytes
06940e7 e9fda99 a1d6c7a 591de4e a1d6c7a e9fda99 591de4e a1d6c7a 591de4e e9fda99 a1d6c7a 591de4e e9fda99 a1d6c7a e9fda99 a1d6c7a 06940e7 a1d6c7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import streamlit as st
from models.prompt_search_engine import PromptSearchEngine
from models.data_reader import load_prompts_from_jsonl
# Cache the prompts data to avoid reloading every time
@st.cache_data
def load_prompts():
prompt_path = "data/prompts_data.jsonl"
return load_prompts_from_jsonl(prompt_path)
# Cache the search engine initialization
@st.cache_resource
def get_search_engine():
search_engine = PromptSearchEngine()
prompts = load_prompts()
search_engine.add_prompts_to_vector_database(prompts)
return search_engine
# Initialize search engine only once
search_engine = get_search_engine()
# Streamlit App Interface
st.title("Prompt Search Engine")
st.write("Search for similar prompts using the local search engine.")
# Input for the user's prompt
query_input = st.text_input("Enter your prompt:")
# Number of similar prompts to retrieve (k)
k = st.number_input("Number of similar prompts to retrieve:", min_value=1, max_value=10, value=3)
# Button to trigger search
if st.button("Search Prompts"):
if query_input:
print(f'Search engine is searching the most similar prompts for query {query_input}')
similar_prompts, distances = search_engine.most_similar(query_input, top_k=k)
print(f'Those are: {similar_prompts}, {distances}')
# Format and display search results
st.write(f"Search Results: ")
for i, (prompt, distance) in enumerate(zip(similar_prompts, distances)):
st.write(f"{i+1}. Prompt: {prompt}, Distance: {distance}")
print(f'Those are: {prompt}, {distance}')
else:
st.error("Please enter a prompt.")
# Additional functionality for vector similarity
st.write("---")
st.write("### Vector Similarities")
if st.button("Retrieve All Vector Similarities"):
if query_input:
query_embedding = search_engine.model.encode([query_input]) # Encode the prompt to a vector
all_similarities = search_engine.cosine_similarity(query_embedding, search_engine.index)
st.write(f"Vector Similarities: {all_similarities}")
else:
st.error("Please enter a prompt.") |