import gradio as gr from transformers import pipeline from PIL import Image image_class_pipe = pipeline(task="image-classification", model="google/vit-large-patch16-224") video_class_pipe = pipeline(task="video-classification", model="nateraw/videomae-base-finetuned-ucf101-subset") depth_estimator = pipeline(task="depth-estimation", model="Intel/dpt-large") image_caption = pipeline("image-to-text",model="Salesforce/blip-image-captioning-base") def classify_image_func(arr): img = Image.fromarray(arr) image_result = image_class_pipe(img) return image_result[0]["label"] def classify_video_func(vid): video_result = video_class_pipe(vid) return video_result def estimate_depth_func(arr): img = Image.fromarray(arr) depth_result = depth_estimator(img) return depth_result["depth"] def blip_captioning_func(arr): img = Image.fromarray(arr) image_caption_result = image_caption(img, max_new_tokens=500) return image_caption_result[0]["generated_text"] with gr.Blocks() as demo: gr.Markdown("# AI Methods") with gr.Tab("Media Classification"): gr.Markdown("# Image Classification") with gr.Row(): classify_image_input = gr.Image(width=340, height=340) with gr.Row(): classify_image_btn = gr.Button("Classify Image") classify_image_output = gr.Textbox(label="Result") classify_image_btn.click(fn=classify_image_func, inputs=[classify_image_input], outputs=[classify_image_output]) gr.Markdown("# Video Classification") with gr.Row(): classify_video_input = gr.Video(width=340, height=340) with gr.Row(): classify_video_btn = gr.Button("Classify Video") classify_video_output = gr.Textbox(label="Result") classify_video_btn.click(fn=classify_video_func, inputs=[classify_video_input], outputs=[classify_video_output]) with gr.Tab("Depth"): gr.Markdown("# Depth Estimation") with gr.Row(): depth_estimation_input = gr.Image(width=260, height=260) with gr.Row(): depth_estimation_btn = gr.Button("Estimate Depth") with gr.Row(): depth_estimation_output = gr.Image() depth_estimation_btn.click(fn=estimate_depth_func, inputs=[depth_estimation_input], outputs=[depth_estimation_output]) with gr.Tab("BLIP Captioning"): gr.Markdown("# BLIP Captioning") with gr.Row(): blip_input = gr.Image(width=260, height=260) with gr.Row(): blip_btn = gr.Button("BLIP Caption") blip_output = gr.Textbox(label="Caption") blip_btn.click(fn=blip_captioning_func, inputs=[blip_input], outputs=[blip_output]) demo.launch(debug=True)