# using https://huggingface.co/spaces/hf-accelerate/model-memory-usage/blob/main/src/model_utils.py import torch from accelerate.commands.estimate import check_has_model, create_empty_model from urllib.parse import urlparse from accelerate.utils import calculate_maximum_sizes from huggingface_hub.utils import GatedRepoError, RepositoryNotFoundError import streamlit as st DTYPE_MODIFIER = {"float32": 1, "float16/bfloat16": 2, "int8": 4, "int4": 8} def translate_llama2(text): "Translates llama-2 to its hf counterpart" if not text.endswith("-hf"): return text + "-hf" return text def get_model(model_name: str, library: str, access_token: str): "Finds and grabs model from the Hub, and initializes on `meta`" if "meta-llama" in model_name and "Llama-2" in model_name: model_name = translate_llama2(model_name) if library == "auto": library = None model_name = extract_from_url(model_name) try: model = create_empty_model(model_name, library_name=library, trust_remote_code=True, access_token=access_token) except GatedRepoError: st.error( f"Model `{model_name}` is a gated model, please ensure to pass in your access token and try again if you have access. You can find your access token here : https://huggingface.co/settings/tokens. " ) st.stop() except RepositoryNotFoundError: st.error(f"Model `{model_name}` was not found on the Hub, please try another model name.") st.stop() except ValueError: st.error( f"Model `{model_name}` does not have any library metadata on the Hub, please manually select a library_name to use (such as `transformers`)" ) st.stop() except (RuntimeError, OSError) as e: library = check_has_model(e) if library != "unknown": st.error( f"Tried to load `{model_name}` with `{library}` but a possible model to load was not found inside the repo." ) st.stop() st.error( f"Model `{model_name}` had an error, please open a discussion on the model's page with the error message and name: `{e}`" ) st.stop() except ImportError: # hacky way to check if it works with `trust_remote_code=False` model = create_empty_model( model_name, library_name=library, trust_remote_code=False, access_token=access_token ) except Exception as e: st.error( f"Model `{model_name}` had an error, please open a discussion on the model's page with the error message and name: `{e}`" ) st.stop() return model def extract_from_url(name: str): "Checks if `name` is a URL, and if so converts it to a model name" is_url = False try: result = urlparse(name) is_url = all([result.scheme, result.netloc]) except Exception: is_url = False # Pass through if not a URL if not is_url: return name else: path = result.path return path[1:] def calculate_memory(model: torch.nn.Module, options: list): "Calculates the memory usage for a model init on `meta` device" total_size, largest_layer = calculate_maximum_sizes(model) num_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad) data = [] for dtype in options: dtype_total_size = total_size dtype_largest_layer = largest_layer[0] modifier = DTYPE_MODIFIER[dtype] dtype_total_size /= modifier dtype_largest_layer /= modifier dtype_training_size = dtype_total_size * 4 / (1024**3) dtype_inference = dtype_total_size * 1.2 / (1024**3) dtype_total_size = dtype_total_size / (1024**3) data.append( { "dtype": dtype, "Total Size (GB)": dtype_total_size, "Inference (GB)" : dtype_inference, "Training using Adam (GB)": dtype_training_size, "Parameters (Billion)" : num_parameters / 1e9 } ) return data