Spaces:
Runtime error
Runtime error
import torch | |
import pickle | |
import nmslib | |
import gradio as gr | |
from sentence_transformers import SentenceTransformer | |
K = 5 | |
def create_demo(callback): | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
fn = gr.Textbox(label="Company name", placeholder="Enter company name here...") | |
with gr.Row(): | |
with gr.Column(): | |
outs = [gr.Text(show_label=False) for _ in range(K)] | |
outs[0].label = "Similar company names" | |
outs[0].show_label = True | |
btn = gr.Button("Find similar companies", variant="primary") | |
btn.click(callback, inputs=fn, outputs=outs) | |
return demo | |
class Callback: | |
def __init__(self, model, data): | |
self.index = nmslib.init(method='hnsw', space='cosinesimil') | |
self.index.addDataPointBatch(data["emb"]) | |
self.index.createIndex({'post': 2}, print_progress=True) | |
self.model = model | |
self.data = data | |
def __call__(self, input_name): | |
emb = self.model.encode(input_name) | |
ids, _ = self.index.knnQuery(emb, k=K) | |
names = [self.data["names"][id] for id in ids] | |
return names | |
def load_data(filename): | |
with open(filename, "rb") as file: | |
data = pickle.load(file) | |
return data | |
def main(): | |
data = load_data("data.pickle") | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
model = SentenceTransformer("Vsevolod/company-names-similarity-sentence-transformer").to(device) | |
callback = Callback(model, data) | |
demo = create_demo(callback) | |
demo.launch() | |
if __name__ == "__main__": | |
main() | |