Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time # to simulate a real time data, time loop
|
2 |
+
|
3 |
+
import numpy as np # np mean, np random
|
4 |
+
import pandas as pd # read csv, df manipulation
|
5 |
+
import plotly.express as px # interactive charts
|
6 |
+
import streamlit as st # π data web app development
|
7 |
+
|
8 |
+
st.set_page_config(
|
9 |
+
page_title="Real-Time Data Science Dashboard",
|
10 |
+
page_icon="β
",
|
11 |
+
layout="wide",
|
12 |
+
)
|
13 |
+
|
14 |
+
# read csv from a github repo
|
15 |
+
dataset_url = "https://raw.githubusercontent.com/Lexie88rus/bank-marketing-analysis/master/bank.csv"
|
16 |
+
|
17 |
+
# read csv from a URL
|
18 |
+
@st.experimental_memo
|
19 |
+
def get_data() -> pd.DataFrame:
|
20 |
+
return pd.read_csv(dataset_url)
|
21 |
+
|
22 |
+
df = get_data()
|
23 |
+
|
24 |
+
# dashboard title
|
25 |
+
st.title("Real-Time / Live Data Science Dashboard")
|
26 |
+
|
27 |
+
# top-level filters
|
28 |
+
job_filter = st.selectbox("Select the Job", pd.unique(df["job"]))
|
29 |
+
|
30 |
+
# creating a single-element container
|
31 |
+
placeholder = st.empty()
|
32 |
+
|
33 |
+
# dataframe filter
|
34 |
+
df = df[df["job"] == job_filter]
|
35 |
+
|
36 |
+
# near real-time / live feed simulation
|
37 |
+
for seconds in range(200):
|
38 |
+
|
39 |
+
df["age_new"] = df["age"] * np.random.choice(range(1, 5))
|
40 |
+
df["balance_new"] = df["balance"] * np.random.choice(range(1, 5))
|
41 |
+
|
42 |
+
# creating KPIs
|
43 |
+
avg_age = np.mean(df["age_new"])
|
44 |
+
|
45 |
+
count_married = int(
|
46 |
+
df[(df["marital"] == "married")]["marital"].count()
|
47 |
+
+ np.random.choice(range(1, 30))
|
48 |
+
)
|
49 |
+
|
50 |
+
balance = np.mean(df["balance_new"])
|
51 |
+
|
52 |
+
with placeholder.container():
|
53 |
+
|
54 |
+
# create three columns
|
55 |
+
kpi1, kpi2, kpi3 = st.columns(3)
|
56 |
+
|
57 |
+
# fill in those three columns with respective metrics or KPIs
|
58 |
+
kpi1.metric(
|
59 |
+
label="Age β³",
|
60 |
+
value=round(avg_age),
|
61 |
+
delta=round(avg_age) - 10,
|
62 |
+
)
|
63 |
+
|
64 |
+
kpi2.metric(
|
65 |
+
label="Married Count π",
|
66 |
+
value=int(count_married),
|
67 |
+
delta=-10 + count_married,
|
68 |
+
)
|
69 |
+
|
70 |
+
kpi3.metric(
|
71 |
+
label="A/C Balance οΌ",
|
72 |
+
value=f"$ {round(balance,2)} ",
|
73 |
+
delta=-round(balance / count_married) * 100,
|
74 |
+
)
|
75 |
+
|
76 |
+
# create two columns for charts
|
77 |
+
fig_col1, fig_col2 = st.columns(2)
|
78 |
+
with fig_col1:
|
79 |
+
st.markdown("### First Chart")
|
80 |
+
fig = px.density_heatmap(
|
81 |
+
data_frame=df, y="age_new", x="marital"
|
82 |
+
)
|
83 |
+
st.write(fig)
|
84 |
+
|
85 |
+
with fig_col2:
|
86 |
+
st.markdown("### Second Chart")
|
87 |
+
fig2 = px.histogram(data_frame=df, x="age_new")
|
88 |
+
st.write(fig2)
|
89 |
+
|
90 |
+
st.markdown("### Detailed Data View")
|
91 |
+
st.dataframe(df)
|
92 |
+
time.sleep(1)
|