from ultralyticsplus import YOLO from PIL import Image import numpy as np from swin import load_model, get_embeddings import matplotlib.pyplot as plt def load_detector(): # load model model = YOLO('https://github.com/akanametov/yolov8-face/releases/download/v0.0.0/yolov8n-face.pt') # set model parameters model.overrides['conf'] = 0.25 # NMS confidence threshold model.overrides['iou'] = 0.45 # NMS IoU threshold model.overrides['agnostic_nms'] = False # NMS class-agnostic model.overrides['max_det'] = 50 # maximum number of detections per image return model def extract_faces(model, image): # perform inference results = model.predict(image) ids = np.array(results[0].boxes.xyxy).astype(np.int32) img = Image.open(image) crops = [] for id in ids: crops.append(Image.fromarray(np.array(img)[id[1] : id[3], id[0]: id[2]])) return crops, np.argmax(np.array(results[0].boxes.conf)) def findCosineDistance(source_representation, test_representation): a = np.matmul(np.transpose(source_representation), test_representation) b = np.sum(np.multiply(source_representation, source_representation)) c = np.sum(np.multiply(test_representation, test_representation)) return 1 - (a / (np.sqrt(b) * np.sqrt(c))) def recognition(imgs, ids, names, source_faces): cols = 4 rows = int(np.ceil(len(imgs)/2)) img_count = 0 fig, axes = plt.subplots(nrows=rows, ncols=cols, figsize=(15,rows*3)) for i in range(rows): for j in range(cols): if img_count < len(imgs): if(j%2): axes[i, j].set_title(f"Confidence: {1 - d[ids[img_count]][img_count]: .2f}") axes[i, j].imshow(imgs[img_count]) axes[i, j].set_axis_off() img_count+=1 else: axes[i, j].set_title(f"Roll No.:{source_imgs[ids[img_count]].split('/')[-1].split('.')[0]}") axes[i, j].imshow(source_faces[ids[img_count]]) axes[i, j].set_axis_off() plt.savefig("Recognition.jpg")