Create face_recognition_system.py
Browse files- face_recognition_system.py +129 -0
face_recognition_system.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from ultralytics import YOLO
|
4 |
+
from arcface import ArcFace
|
5 |
+
import pickle
|
6 |
+
import os
|
7 |
+
from datetime import datetime
|
8 |
+
|
9 |
+
class FaceRecognitionSystem:
|
10 |
+
def __init__(self, database_path="face_database.pkl", confidence_threshold=0.5, similarity_threshold=2):
|
11 |
+
# Initialize YOLO for face detection
|
12 |
+
self.yolo_model = YOLO('https://github.com/akanametov/yolo-face/releases/download/v0.0.0/yolov11s-face.pt')
|
13 |
+
|
14 |
+
# Initialize ArcFace for face recognition
|
15 |
+
self.face_rec = ArcFace.ArcFace("model.tflite")
|
16 |
+
|
17 |
+
# Thresholds
|
18 |
+
self.confidence_threshold = confidence_threshold
|
19 |
+
self.similarity_threshold = similarity_threshold
|
20 |
+
|
21 |
+
# Load or create face database
|
22 |
+
self.database_path = database_path
|
23 |
+
self.face_database = self.load_database()
|
24 |
+
|
25 |
+
def load_database(self):
|
26 |
+
if os.path.exists(self.database_path):
|
27 |
+
with open(self.database_path, 'rb') as f:
|
28 |
+
return pickle.load(f)
|
29 |
+
return {}
|
30 |
+
|
31 |
+
def save_database(self):
|
32 |
+
with open(self.database_path, 'wb') as f:
|
33 |
+
pickle.dump(self.face_database, f)
|
34 |
+
|
35 |
+
def add_face_to_database(self, name, frame):
|
36 |
+
"""Add a new face to the database"""
|
37 |
+
try:
|
38 |
+
embedding = self.face_rec.calc_emb(frame)
|
39 |
+
self.face_database[name] = embedding
|
40 |
+
self.save_database()
|
41 |
+
return True
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error adding face to database: {e}")
|
44 |
+
return False
|
45 |
+
|
46 |
+
def find_closest_match(self, embedding):
|
47 |
+
"""Find the closest matching face in the database"""
|
48 |
+
if not self.face_database:
|
49 |
+
return "Unknown", 1.0
|
50 |
+
|
51 |
+
min_distance = 10000
|
52 |
+
closest_name = "Unknown"
|
53 |
+
|
54 |
+
for name, stored_embedding in self.face_database.items():
|
55 |
+
distance = self.face_rec.get_distance_embeddings(embedding, stored_embedding)
|
56 |
+
if distance < min_distance:
|
57 |
+
min_distance = distance
|
58 |
+
closest_name = name
|
59 |
+
|
60 |
+
return closest_name, min_distance
|
61 |
+
|
62 |
+
def process_frame(self, frame):
|
63 |
+
"""Process a single frame"""
|
64 |
+
# Run YOLO detection
|
65 |
+
results = self.yolo_model(frame, verbose=False)[0]
|
66 |
+
|
67 |
+
# Process each detected face
|
68 |
+
for detection in results.boxes.data:
|
69 |
+
x1, y1, x2, y2, conf, _ = detection
|
70 |
+
|
71 |
+
if conf < self.confidence_threshold:
|
72 |
+
continue
|
73 |
+
|
74 |
+
# Convert coordinates to integers
|
75 |
+
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
|
76 |
+
|
77 |
+
# Extract face region
|
78 |
+
face_region = frame[y1:y2, x1:x2]
|
79 |
+
|
80 |
+
try:
|
81 |
+
# Calculate face embedding
|
82 |
+
embedding = self.face_rec.calc_emb(face_region)
|
83 |
+
|
84 |
+
# Find closest match
|
85 |
+
name, distance = self.find_closest_match(embedding)
|
86 |
+
|
87 |
+
# Determine if match is close enough
|
88 |
+
if distance > self.similarity_threshold:
|
89 |
+
name = "Unknown"
|
90 |
+
|
91 |
+
# Draw rectangle and name
|
92 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
93 |
+
cv2.putText(frame, f"{name} ({conf:.2f})",
|
94 |
+
(x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX,
|
95 |
+
0.5, (0, 255, 0), 2)
|
96 |
+
|
97 |
+
except Exception as e:
|
98 |
+
print(f"Error processing face: {e}")
|
99 |
+
|
100 |
+
return frame
|
101 |
+
|
102 |
+
def run(self):
|
103 |
+
"""Run the face recognition system on webcam feed"""
|
104 |
+
cap = cv2.VideoCapture(0)
|
105 |
+
|
106 |
+
while True:
|
107 |
+
ret, frame = cap.read()
|
108 |
+
if not ret:
|
109 |
+
break
|
110 |
+
|
111 |
+
# Process the frame
|
112 |
+
processed_frame = self.process_frame(frame)
|
113 |
+
|
114 |
+
# Display the result
|
115 |
+
cv2.imshow('Face Recognition', processed_frame)
|
116 |
+
|
117 |
+
key = cv2.waitKey(1)
|
118 |
+
if key == ord('q'):
|
119 |
+
break
|
120 |
+
elif key == ord('a'):
|
121 |
+
# Add new face to database
|
122 |
+
name = input("Enter name for new face: ")
|
123 |
+
if self.add_face_to_database(name, frame):
|
124 |
+
print(f"Successfully added {name} to database")
|
125 |
+
else:
|
126 |
+
print("Failed to add face to database")
|
127 |
+
|
128 |
+
cap.release()
|
129 |
+
cv2.destroyAllWindows()
|