Spaces:
Build error
Build error
from transformers import AutoModel, AutoTokenizer, AutoFeatureExtractor | |
import torch | |
# Load pre-trained text and vision models | |
text_model = AutoModel.from_pretrained("bert-base-uncased") | |
vision_model = AutoModel.from_pretrained("google/vit-base-patch16-224") | |
# Define a simple multimodal model | |
class SimpleMLLM(torch.nn.Module): | |
def __init__(self, text_model, vision_model): | |
super().__init__() | |
self.text_model = text_model | |
self.vision_model = vision_model | |
self.fusion = torch.nn.Linear(text_model.config.hidden_size + vision_model.config.hidden_size, 512) | |
def forward(self, input_ids, attention_mask, pixel_values): | |
text_outputs = self.text_model(input_ids=input_ids, attention_mask=attention_mask) | |
vision_outputs = self.vision_model(pixel_values=pixel_values) | |
# Simple fusion of text and vision features | |
fused = torch.cat([text_outputs.last_hidden_state[:, 0], vision_outputs.last_hidden_state[:, 0]], dim=1) | |
output = self.fusion(fused) | |
return output | |
# Initialize the model | |
model = SimpleMLLM(text_model, vision_model) | |
# You would then need to implement data loading, training loop, etc. |