import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset import math class CustomDataset(Dataset): def __init__(self, texts, input_ids, attention_masks, token_type_ids, labels): self.texts = texts self.input_ids = input_ids self.token_type_ids = token_type_ids self.attention_masks = attention_masks self.labels = labels def __len__(self): return len(self.texts) def __getitem__(self, item ): text = self.texts[item] input_id = torch.LongTensor(self.input_ids[item]) token_type_id = torch.LongTensor(self.token_type_ids[item]) attention_mask = torch.LongTensor(self.attention_masks[item]) label = torch.LongTensor(self.labels[item]) return { 'text': text, 'input_ids': input_id, 'token_type_ids': token_type_id, 'attention_mask': attention_mask, 'labels': label, } class FeedForwardSubLayer(nn.Module): # Specify the two linear layers' input and output sizes def __init__(self, d_model, d_ff): super(FeedForwardSubLayer, self).__init__() self.fc1 = nn.Linear(d_model, d_ff) self.fc2 = nn.Linear(d_ff, d_model) self.relu = nn.ReLU() # Apply a forward pass def forward(self, x): return self.fc2(self.relu(self.fc1(x))) # Complete the initialization of elements in the encoder layer class EncoderLayer(nn.Module): def __init__(self, d_model, num_heads, d_ff, dropout): super(EncoderLayer, self).__init__() self.self_attn = MultiHeadAttention(d_model, num_heads) self.feed_forward = FeedForwardSubLayer(d_model, d_ff) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) def forward(self, x, mask): attn_output = self.self_attn(x, x, x, mask) x = self.norm1(x + self.dropout(attn_output)) ff_output = self.feed_forward(x) return self.norm2(x + self.dropout(ff_output)) class MultiHeadAttention(nn.Module): def __init__(self, d_model, num_heads): super(MultiHeadAttention, self).__init__() # Set the number of attention heads self.num_heads = num_heads self.d_model = d_model assert d_model % num_heads == 0 #dimension, headlere tam bölünüyormu kontrol et. self.head_dim = d_model // num_heads # Set up the linear transformations self.query_linear = nn.Linear(d_model, d_model) self.key_linear = nn.Linear(d_model, d_model) self.value_linear = nn.Linear(d_model, d_model) self.output_linear = nn.Linear(d_model, d_model) def split_heads(self, x, batch_size): # Split the sequence embeddings in x across the attention heads x = x.view(batch_size, -1, self.num_heads, self.head_dim) return x.permute(0, 2, 1, 3) #.contiguous().view(batch_size * self.num_heads, -1, self.head_dim) def compute_attention(self, query, key, mask=None): # Compute dot-product attention scores scores = torch.matmul(query, key.permute(0,1,3,2)) mask = mask.unsqueeze(1).unsqueeze(1) if mask is not None: scores = scores.masked_fill(mask == 0, float("-1e20")) # Normalize attention scores into attention weights attention_weights = F.softmax(scores, dim=-1) return attention_weights def forward(self, query, key, value, mask=None): batch_size = query.size(0) query = self.split_heads(self.query_linear(query), batch_size) key = self.split_heads(self.key_linear(key), batch_size) value = self.split_heads(self.value_linear(value), batch_size) attention_weights = self.compute_attention(query, key, mask) # Multiply attention weights by values, concatenate and linearly project outputs output = torch.matmul(attention_weights, value) output = output.view(batch_size, self.num_heads, -1, self.head_dim).permute(0, 2, 1, 3).contiguous().view( batch_size, -1, self.d_model) return self.output_linear(output) class PositionalEncoder(nn.Module): def __init__(self, d_model, max_length): super(PositionalEncoder, self).__init__() self.d_model = d_model self.max_length = max_length # Initialize the positional encoding matrix pe = torch.zeros(max_length, d_model) position = torch.arange(0, max_length, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2, dtype=torch.float) * -(math.log(10000.0) / d_model)) # Calculate and assign position encodings to the matrix pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) self.register_buffer('pe', pe) # Update the embeddings tensor adding the positional encodings def forward(self, x): x = x + self.pe[:, :x.size(1)] return x class TransformerEncoder(nn.Module): def __init__(self): super(TransformerEncoder, self).__init__() self.embedding = nn.Embedding(100000, 512) self.positional_encoding = PositionalEncoder(512, 128) # Define a stack of multiple encoder layers self.layers = nn.ModuleList([EncoderLayer(512, 8, 2048, 0.1) for _ in range(6)]) # Complete the forward pass method def forward(self, x, mask): x = self.embedding(x) x = self.positional_encoding(x) for layer in self.layers: x = layer(x, mask) return x def load_model_to_cpu(model, path="model.pth"): checkpoint = torch.load(path, map_location=torch.device('cpu')) model.load_state_dict(checkpoint) return model