Weedoo commited on
Commit
4596869
1 Parent(s): f1b4fcb

add utils and the main script

Browse files
Files changed (2) hide show
  1. app.py +94 -0
  2. utils.py +132 -0
app.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ import gradio as gr
4
+ import pandas as pd
5
+ from utils import get_zotero_ids, get_arxiv_papers, get_hf_embeddings, upload_to_pinecone, get_new_papers, recommend_papers
6
+
7
+ HF_API_KEY = os.getenv('HF_API_KEY')
8
+ PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')
9
+ INDEX_NAME = os.getenv('INDEX_NAME')
10
+ NAMESPACE_NAME = os.getenv('NAMESPACE_NAME')
11
+
12
+ def category_radio(cat):
13
+ if cat == 'Computer Vision and Pattern Recognition':
14
+ return 'cs.CV'
15
+ elif cat == 'Computation and Language':
16
+ return 'cs.CL'
17
+ elif cat == 'Artificial Intelligence':
18
+ return 'cs.AI'
19
+ elif cat == 'Robotics':
20
+ return 'cs.RO'
21
+
22
+ def comment_radio(com):
23
+ if com == 'CVPR':
24
+ return 'CVPR'
25
+ else:
26
+ return None
27
+
28
+ def recommend_link(recs):
29
+ return recs
30
+
31
+ with gr.Blocks() as demo:
32
+
33
+ zotero_api_key = gr.Textbox(label="Zotero API Key")
34
+
35
+ zotero_library_id = gr.Textbox(label="Zotero Library ID")
36
+
37
+ zotero_tag = gr.Textbox(label="Zotero Tag")
38
+
39
+ arxiv_category_name = gr.State([])
40
+ radio_arxiv_category_name = gr.Radio(['Computer Vision and Pattern Recognition', 'Computation and Language', 'Artificial Intelligence', 'Robotics'], label="ArXiv Category Query")
41
+ radio_arxiv_category_name.change(fn = category_radio, inputs= radio_arxiv_category_name, outputs= arxiv_category_name)
42
+
43
+ arxiv_comment_query = gr.State([])
44
+ radio_arxiv_comment_query = gr.Radio(['CVPR', 'None'], label="ArXiv Comment Query")
45
+ radio_arxiv_comment_query.change(fn = comment_radio, inputs= radio_arxiv_comment_query, outputs= arxiv_comment_query)
46
+
47
+ threshold = gr.Slider(minimum= 0.70, maximum= 0.99, label="Similarity Score Threshold")
48
+
49
+ init_output = gr.Textbox(label="Project Initialization Result")
50
+
51
+ rec_output = gr.Markdown(label = "Recommended Papers")
52
+
53
+ init_btn = gr.Button("Initialize")
54
+
55
+ rec_btn = gr.Button("Recommend")
56
+
57
+ @init_btn.click(inputs= [zotero_api_key, zotero_library_id, zotero_tag], outputs= [init_output])
58
+ def init(zotero_api_key, zotero_library_id, zotero_tag, hf_api_key = HF_API_KEY, pinecone_api_key = PINECONE_API_KEY, index_name = INDEX_NAME, namespace_name = NAMESPACE_NAME):
59
+
60
+ logging.basicConfig(filename= '/mnt/c/Users/ankit/Desktop/Portfolio/Paper-Recommendation-System/logs/logfile.log', level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
61
+ logging.info("Project Initialization Script Started (Serverless)")
62
+
63
+ ids = get_zotero_ids(zotero_api_key, zotero_library_id, zotero_tag)
64
+
65
+ df = get_arxiv_papers(ids)
66
+
67
+ embeddings, dim = get_hf_embeddings(hf_api_key, df)
68
+
69
+ feedback = upload_to_pinecone(pinecone_api_key, index_name, namespace_name, embeddings, dim, df)
70
+
71
+ logging.info(feedback)
72
+ if feedback is dict:
73
+ return f"Retrieved {len(ids)} papers from Zotero. Successfully upserted {feedback['upserted_count']} embeddings in {namespace_name} namespace."
74
+ else :
75
+ return feedback
76
+
77
+ @rec_btn.click(inputs= [arxiv_category_name, arxiv_comment_query, threshold], outputs= [rec_output])
78
+ def recs(arxiv_category_name, arxiv_comment_query, threshold, hf_api_key = HF_API_KEY, pinecone_api_key = PINECONE_API_KEY, index_name = INDEX_NAME, namespace_name = NAMESPACE_NAME):
79
+ logging.info("Weekly Script Started (Serverless)")
80
+
81
+ df = get_arxiv_papers(category= arxiv_category_name, comment= arxiv_comment_query)
82
+
83
+ df = get_new_papers(df)
84
+
85
+ if not isinstance(df, pd.DataFrame):
86
+ return df
87
+
88
+ embeddings, _ = get_hf_embeddings(hf_api_key, df)
89
+
90
+ results = recommend_papers(pinecone_api_key, index_name, namespace_name, embeddings, df, threshold)
91
+
92
+ return results
93
+
94
+ demo.launch(share = True)
utils.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import arxiv
3
+ import requests
4
+ from pinecone import Pinecone, ServerlessSpec
5
+ import logging
6
+ import os
7
+
8
+ script_dir = os.path.dirname(os.path.abspath(__file__))
9
+ os.chdir(script_dir)
10
+
11
+ def get_zotero_ids(api_key, library_id, tag):
12
+
13
+ base_url = 'https://api.zotero.org'
14
+ suffix = '/users/'+ library_id +'/items?tag='+ tag
15
+
16
+ header = {'Authorization': 'Bearer '+ api_key}
17
+ request = requests.get(base_url + suffix, headers= header)
18
+
19
+ return [data['data']['archiveID'].replace('arXiv:', '') for data in request.json()]
20
+
21
+ def get_arxiv_papers(ids = None, category = None, comment = None):
22
+
23
+ logging.getLogger('arxiv').setLevel(logging.WARNING)
24
+
25
+ client = arxiv.Client()
26
+
27
+ if category is None:
28
+ search = arxiv.Search(
29
+ id_list= ids,
30
+ max_results= len(ids),
31
+ )
32
+ else :
33
+ if comment is None:
34
+ custom_query = f'cat:{category}'
35
+ else:
36
+ custom_query = f'cat:{category} AND co:{comment}'
37
+
38
+ search = arxiv.Search(
39
+ query = custom_query,
40
+ max_results= 15,
41
+ sort_by= arxiv.SortCriterion.SubmittedDate
42
+ )
43
+ if ids is None and category is None:
44
+ raise ValueError('not a valid query')
45
+
46
+ df = pd.DataFrame({'Title': [result.title for result in client.results(search)],
47
+ 'Abstract': [result.summary.replace('\n', ' ') for result in client.results(search)],
48
+ 'Date': [result.published.date().strftime('%Y-%m-%d') for result in client.results(search)],
49
+ 'id': [result.entry_id for result in client.results(search)]})
50
+
51
+ if ids:
52
+ df.to_csv('arxiv-scrape.csv', index = False)
53
+ return df
54
+
55
+ def get_hf_embeddings(api_key, df):
56
+
57
+ title_abs = [title + '[SEP]' + abstract for title,abstract in zip(df['Title'], df['Abstract'])]
58
+
59
+ API_URL = "https://api-inference.huggingface.co/models/malteos/scincl"
60
+ headers = {"Authorization": f"Bearer {api_key}"}
61
+
62
+ response = requests.post(API_URL, headers=headers, json={"inputs": title_abs, "wait_for_model": False})
63
+ print(str(response.status_code) + 'This part needs an update, causing KeyError 0')
64
+ if response.status_code == 503:
65
+ response = requests.post(API_URL, headers=headers, json={"inputs": title_abs, "wait_for_model": True})
66
+
67
+ embeddings = response.json()
68
+
69
+ return embeddings, len(embeddings[0])
70
+
71
+
72
+ def upload_to_pinecone(api_key, index, namespace, embeddings, dim, df):
73
+ input = [{'id': df['id'][i], 'values': embeddings[i]} for i in range(len(embeddings))]
74
+
75
+ pc = Pinecone(api_key = api_key)
76
+ if index in pc.list_indexes().names():
77
+ while True:
78
+ logging.warning(f'Index name : {index} already exists.')
79
+ return f'Index name : {index} already exists'
80
+
81
+ pc.create_index(
82
+ name=index,
83
+ dimension=dim,
84
+ metric="cosine",
85
+ spec=ServerlessSpec(
86
+ cloud='aws',
87
+ region='us-east-1'
88
+ )
89
+ )
90
+
91
+ index = pc.Index(index)
92
+ return index.upsert(vectors=input, namespace=namespace)
93
+
94
+
95
+ def get_new_papers(df):
96
+ df_main = pd.read_csv('arxiv-scrape.csv')
97
+ df.reset_index(inplace=True)
98
+ df.drop(columns=['index'], inplace=True)
99
+ union_df = df.merge(df_main, how='left', indicator=True)
100
+ df = union_df[union_df['_merge'] == 'left_only'].drop(columns=['_merge'])
101
+ if df.empty:
102
+ return 'No New Papers Found'
103
+ else:
104
+ df_main = pd.concat([df_main, df], ignore_index= True)
105
+ df_main.drop_duplicates(inplace= True)
106
+ df_main.to_csv('arxiv-scrape.csv', index = False)
107
+ return df
108
+
109
+ def recommend_papers(api_key, index, namespace, embeddings, df, threshold):
110
+
111
+ pc = Pinecone(api_key = api_key)
112
+ if index in pc.list_indexes().names():
113
+ index = pc.Index(index)
114
+ else:
115
+ raise ValueError(f"{index} doesnt exist. Project isnt initialized properly")
116
+
117
+ results = []
118
+ score_threshold = threshold
119
+ for i,embedding in enumerate(embeddings):
120
+ query = embedding
121
+ result = index.query(namespace=namespace,vector=query,top_k=3,include_values=False)
122
+ sum_score = sum(match['score'] for match in result['matches'])
123
+ if sum_score > score_threshold:
124
+ results.append(f"Paper-URL : [{df['id'][i]}]({df['id'][i]}) with score: {sum_score / 3} <br />")
125
+
126
+ if results:
127
+ return '\n'.join(results)
128
+ else:
129
+ return 'No Interesting Paper'
130
+
131
+
132
+