|
|
|
from __future__ import annotations |
|
from typing import TYPE_CHECKING, List |
|
|
|
import logging |
|
import json |
|
import os |
|
import requests |
|
import urllib3 |
|
|
|
from tqdm import tqdm |
|
import colorama |
|
from duckduckgo_search import ddg |
|
import asyncio |
|
import aiohttp |
|
|
|
from modules.presets import * |
|
from modules.llama_func import * |
|
from modules.utils import * |
|
from . import shared |
|
from modules.config import retrieve_proxy |
|
|
|
|
|
|
|
if TYPE_CHECKING: |
|
from typing import TypedDict |
|
|
|
|
|
class DataframeData(TypedDict): |
|
headers: List[str] |
|
data: List[List[str | int | bool]] |
|
|
|
initial_prompt = "You are a helpful assistant." |
|
HISTORY_DIR = "history" |
|
TEMPLATES_DIR = "templates" |
|
|
|
|
|
@shared.state.switching_api_key |
|
def get_response( |
|
openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model |
|
): |
|
headers = { |
|
"Content-Type": "application/json", |
|
"Authorization": f"Bearer {openai_api_key}", |
|
} |
|
|
|
history = [construct_system(system_prompt), *history] |
|
|
|
payload = { |
|
"model": selected_model, |
|
"messages": history, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"n": 1, |
|
"stream": stream, |
|
"presence_penalty": 0, |
|
"frequency_penalty": 0, |
|
} |
|
if stream: |
|
timeout = timeout_streaming |
|
else: |
|
timeout = timeout_all |
|
|
|
|
|
if shared.state.completion_url != COMPLETION_URL: |
|
logging.info(f"使用自定义API URL: {shared.state.completion_url}") |
|
|
|
with retrieve_proxy(): |
|
response = requests.post( |
|
shared.state.completion_url, |
|
headers=headers, |
|
json=payload, |
|
stream=True, |
|
timeout=timeout, |
|
) |
|
|
|
return response |
|
|
|
|
|
def stream_predict( |
|
openai_api_key, |
|
system_prompt, |
|
history, |
|
inputs, |
|
chatbot, |
|
all_token_counts, |
|
top_p, |
|
temperature, |
|
selected_model, |
|
fake_input=None, |
|
display_append="" |
|
): |
|
def get_return_value(): |
|
return chatbot, history, status_text, all_token_counts |
|
|
|
logging.info("实时回答模式") |
|
partial_words = "" |
|
counter = 0 |
|
status_text = "开始实时传输回答……" |
|
history.append(construct_user(inputs)) |
|
history.append(construct_assistant("")) |
|
if fake_input: |
|
chatbot.append((fake_input, "")) |
|
else: |
|
chatbot.append((inputs, "")) |
|
user_token_count = 0 |
|
if fake_input is not None: |
|
input_token_count = count_token(construct_user(fake_input)) |
|
else: |
|
input_token_count = count_token(construct_user(inputs)) |
|
if len(all_token_counts) == 0: |
|
system_prompt_token_count = count_token(construct_system(system_prompt)) |
|
user_token_count = ( |
|
input_token_count + system_prompt_token_count |
|
) |
|
else: |
|
user_token_count = input_token_count |
|
all_token_counts.append(user_token_count) |
|
logging.info(f"输入token计数: {user_token_count}") |
|
yield get_return_value() |
|
try: |
|
response = get_response( |
|
openai_api_key, |
|
system_prompt, |
|
history, |
|
temperature, |
|
top_p, |
|
True, |
|
selected_model, |
|
) |
|
|
|
|
|
except requests.exceptions.ConnectTimeout: |
|
status_text = ( |
|
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt |
|
) |
|
yield get_return_value() |
|
return |
|
except requests.exceptions.ReadTimeout: |
|
status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt |
|
yield get_return_value() |
|
return |
|
|
|
yield get_return_value() |
|
error_json_str = "" |
|
|
|
if fake_input is not None: |
|
history[-2] = construct_user(fake_input) |
|
for chunk in tqdm(response.iter_lines()): |
|
if counter == 0: |
|
counter += 1 |
|
continue |
|
counter += 1 |
|
|
|
if chunk: |
|
chunk = chunk.decode() |
|
chunklength = len(chunk) |
|
try: |
|
chunk = json.loads(chunk[6:]) |
|
except json.JSONDecodeError: |
|
logging.info(chunk) |
|
error_json_str += chunk |
|
status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}" |
|
yield get_return_value() |
|
continue |
|
|
|
if chunklength > 6 and "delta" in chunk["choices"][0]: |
|
finish_reason = chunk["choices"][0]["finish_reason"] |
|
status_text = construct_token_message(all_token_counts) |
|
if finish_reason == "stop": |
|
yield get_return_value() |
|
break |
|
try: |
|
partial_words = ( |
|
partial_words + chunk["choices"][0]["delta"]["content"] |
|
) |
|
except KeyError: |
|
status_text = ( |
|
standard_error_msg |
|
+ "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: " |
|
+ str(sum(all_token_counts)) |
|
) |
|
yield get_return_value() |
|
break |
|
history[-1] = construct_assistant(partial_words) |
|
chatbot[-1] = (chatbot[-1][0], partial_words + display_append) |
|
all_token_counts[-1] += 1 |
|
yield get_return_value() |
|
|
|
|
|
def predict_all( |
|
openai_api_key, |
|
system_prompt, |
|
history, |
|
inputs, |
|
chatbot, |
|
all_token_counts, |
|
top_p, |
|
temperature, |
|
selected_model, |
|
fake_input=None, |
|
display_append="" |
|
): |
|
logging.info("一次性回答模式") |
|
history.append(construct_user(inputs)) |
|
history.append(construct_assistant("")) |
|
if fake_input: |
|
chatbot.append((fake_input, "")) |
|
else: |
|
chatbot.append((inputs, "")) |
|
if fake_input is not None: |
|
all_token_counts.append(count_token(construct_user(fake_input))) |
|
else: |
|
all_token_counts.append(count_token(construct_user(inputs))) |
|
try: |
|
|
|
|
|
|
|
response = get_response( |
|
openai_api_key, |
|
system_prompt, |
|
history, |
|
temperature, |
|
top_p, |
|
False, |
|
selected_model, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
except requests.exceptions.ConnectTimeout: |
|
status_text = ( |
|
standard_error_msg + connection_timeout_prompt + error_retrieve_prompt |
|
) |
|
return chatbot, history, status_text, all_token_counts |
|
except requests.exceptions.ProxyError: |
|
status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt |
|
return chatbot, history, status_text, all_token_counts |
|
except requests.exceptions.SSLError: |
|
status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt |
|
return chatbot, history, status_text, all_token_counts |
|
response = json.loads(response.text) |
|
if fake_input is not None: |
|
history[-2] = construct_user(fake_input) |
|
try: |
|
content = response["choices"][0]["message"]["content"] |
|
history[-1] = construct_assistant(content) |
|
chatbot[-1] = (chatbot[-1][0], content + display_append) |
|
total_token_count = response["usage"]["total_tokens"] |
|
if fake_input is not None: |
|
all_token_counts[-1] += count_token(construct_assistant(content)) |
|
else: |
|
all_token_counts[-1] = total_token_count - sum(all_token_counts) |
|
status_text = construct_token_message(total_token_count) |
|
return chatbot, history, status_text, all_token_counts |
|
except KeyError: |
|
status_text = standard_error_msg + str(response) |
|
return chatbot, history, status_text, all_token_counts |
|
|
|
|
|
def predict( |
|
openai_api_key, |
|
system_prompt, |
|
history, |
|
inputs, |
|
chatbot, |
|
all_token_counts, |
|
top_p, |
|
temperature, |
|
stream=False, |
|
selected_model=MODELS[0], |
|
use_websearch=False, |
|
files=None, |
|
reply_language="中文", |
|
should_check_token_count=True, |
|
): |
|
|
|
|
|
|
|
from llama_index.indices.vector_store.base_query import GPTVectorStoreIndexQuery |
|
from llama_index.indices.query.schema import QueryBundle |
|
from langchain.llms import OpenAIChat |
|
|
|
logging.info("输入为:" + colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL) |
|
if should_check_token_count: |
|
yield chatbot + [(inputs, "")], history, "开始生成回答……", all_token_counts |
|
if reply_language == "跟随问题语言(不稳定)": |
|
reply_language = "the same language as the question, such as English, 中文, 日本語, Español, Français, or Deutsch." |
|
old_inputs = None |
|
display_reference = [] |
|
limited_context = False |
|
if files: |
|
limited_context = True |
|
old_inputs = inputs |
|
msg = "加载索引中……(这可能需要几分钟)" |
|
logging.info(msg) |
|
yield chatbot + [(inputs, "")], history, msg, all_token_counts |
|
index = construct_index(openai_api_key, file_src=files) |
|
msg = "索引构建完成,获取回答中……" |
|
logging.info(msg) |
|
yield chatbot + [(inputs, "")], history, msg, all_token_counts |
|
with retrieve_proxy(): |
|
llm_predictor = LLMPredictor(llm=OpenAIChat(temperature=0, model_name=selected_model)) |
|
prompt_helper = PromptHelper(max_input_size=4096, num_output=5, max_chunk_overlap=20, chunk_size_limit=600) |
|
from llama_index import ServiceContext |
|
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper) |
|
query_object = GPTVectorStoreIndexQuery(index.index_struct, service_context=service_context, |
|
similarity_top_k=5, vector_store=index._vector_store, |
|
docstore=index._docstore) |
|
query_bundle = QueryBundle(inputs) |
|
nodes = query_object.retrieve(query_bundle) |
|
reference_results = [n.node.text for n in nodes] |
|
reference_results = add_source_numbers(reference_results, use_source=False) |
|
display_reference = add_details(reference_results) |
|
display_reference = "\n\n" + "".join(display_reference) |
|
inputs = ( |
|
replace_today(PROMPT_TEMPLATE) |
|
.replace("{query_str}", inputs) |
|
.replace("{context_str}", "\n\n".join(reference_results)) |
|
.replace("{reply_language}", reply_language) |
|
) |
|
elif use_websearch: |
|
limited_context = True |
|
search_results = ddg(inputs, max_results=5) |
|
old_inputs = inputs |
|
reference_results = [] |
|
for idx, result in enumerate(search_results): |
|
logging.info(f"搜索结果{idx + 1}:{result}") |
|
domain_name = urllib3.util.parse_url(result["href"]).host |
|
reference_results.append([result["body"], result["href"]]) |
|
display_reference.append(f"{idx + 1}. [{domain_name}]({result['href']})\n") |
|
reference_results = add_source_numbers(reference_results) |
|
display_reference = "\n\n" + "".join(display_reference) |
|
inputs = ( |
|
replace_today(WEBSEARCH_PTOMPT_TEMPLATE) |
|
.replace("{query}", inputs) |
|
.replace("{web_results}", "\n\n".join(reference_results)) |
|
.replace("{reply_language}", reply_language) |
|
) |
|
else: |
|
display_reference = "" |
|
|
|
if len(openai_api_key) == 0 and not shared.state.multi_api_key: |
|
status_text = standard_error_msg + no_apikey_msg |
|
logging.info(status_text) |
|
chatbot.append((inputs, "")) |
|
if len(history) == 0: |
|
history.append(construct_user(inputs)) |
|
history.append("") |
|
all_token_counts.append(0) |
|
else: |
|
history[-2] = construct_user(inputs) |
|
yield chatbot + [(inputs, "")], history, status_text, all_token_counts |
|
return |
|
elif len(inputs.strip()) == 0: |
|
status_text = standard_error_msg + no_input_msg |
|
logging.info(status_text) |
|
yield chatbot + [(inputs, "")], history, status_text, all_token_counts |
|
return |
|
|
|
if stream: |
|
logging.info("使用流式传输") |
|
iter = stream_predict( |
|
openai_api_key, |
|
system_prompt, |
|
history, |
|
inputs, |
|
chatbot, |
|
all_token_counts, |
|
top_p, |
|
temperature, |
|
selected_model, |
|
fake_input=old_inputs, |
|
display_append=display_reference |
|
) |
|
for chatbot, history, status_text, all_token_counts in iter: |
|
if shared.state.interrupted: |
|
shared.state.recover() |
|
return |
|
yield chatbot, history, status_text, all_token_counts |
|
else: |
|
logging.info("不使用流式传输") |
|
chatbot, history, status_text, all_token_counts = predict_all( |
|
openai_api_key, |
|
system_prompt, |
|
history, |
|
inputs, |
|
chatbot, |
|
all_token_counts, |
|
top_p, |
|
temperature, |
|
selected_model, |
|
fake_input=old_inputs, |
|
display_append=display_reference |
|
) |
|
yield chatbot, history, status_text, all_token_counts |
|
|
|
logging.info(f"传输完毕。当前token计数为{all_token_counts}") |
|
if len(history) > 1 and history[-1]["content"] != inputs: |
|
logging.info( |
|
"回答为:" |
|
+ colorama.Fore.BLUE |
|
+ f"{history[-1]['content']}" |
|
+ colorama.Style.RESET_ALL |
|
) |
|
|
|
if limited_context: |
|
history = history[-4:] |
|
all_token_counts = all_token_counts[-2:] |
|
yield chatbot, history, status_text, all_token_counts |
|
|
|
if stream: |
|
max_token = MODEL_SOFT_TOKEN_LIMIT[selected_model]["streaming"] |
|
else: |
|
max_token = MODEL_SOFT_TOKEN_LIMIT[selected_model]["all"] |
|
|
|
if sum(all_token_counts) > max_token and should_check_token_count: |
|
print(all_token_counts) |
|
count = 0 |
|
while sum(all_token_counts) > max_token - 500 and sum(all_token_counts) > 0: |
|
count += 1 |
|
del all_token_counts[0] |
|
del history[:2] |
|
logging.info(status_text) |
|
status_text = f"为了防止token超限,模型忘记了早期的 {count} 轮对话" |
|
yield chatbot, history, status_text, all_token_counts |
|
|
|
|
|
def retry( |
|
openai_api_key, |
|
system_prompt, |
|
history, |
|
chatbot, |
|
token_count, |
|
top_p, |
|
temperature, |
|
stream=False, |
|
selected_model=MODELS[0], |
|
reply_language="中文", |
|
): |
|
logging.info("重试中……") |
|
if len(history) == 0: |
|
yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count |
|
return |
|
history.pop() |
|
inputs = history.pop()["content"] |
|
token_count.pop() |
|
iter = predict( |
|
openai_api_key, |
|
system_prompt, |
|
history, |
|
inputs, |
|
chatbot, |
|
token_count, |
|
top_p, |
|
temperature, |
|
stream=stream, |
|
selected_model=selected_model, |
|
reply_language=reply_language, |
|
) |
|
logging.info("重试中……") |
|
for x in iter: |
|
yield x |
|
logging.info("重试完毕") |
|
|
|
|
|
def reduce_token_size( |
|
openai_api_key, |
|
system_prompt, |
|
history, |
|
chatbot, |
|
token_count, |
|
top_p, |
|
temperature, |
|
max_token_count, |
|
selected_model=MODELS[0], |
|
reply_language="中文", |
|
): |
|
logging.info("开始减少token数量……") |
|
iter = predict( |
|
openai_api_key, |
|
system_prompt, |
|
history, |
|
summarize_prompt, |
|
chatbot, |
|
token_count, |
|
top_p, |
|
temperature, |
|
selected_model=selected_model, |
|
should_check_token_count=False, |
|
reply_language=reply_language, |
|
) |
|
logging.info(f"chatbot: {chatbot}") |
|
flag = False |
|
for chatbot, history, status_text, previous_token_count in iter: |
|
num_chat = find_n(previous_token_count, max_token_count) |
|
logging.info(f"previous_token_count: {previous_token_count}, keeping {num_chat} chats") |
|
if flag: |
|
chatbot = chatbot[:-1] |
|
flag = True |
|
history = history[-2 * num_chat:] if num_chat > 0 else [] |
|
token_count = previous_token_count[-num_chat:] if num_chat > 0 else [] |
|
msg = f"保留了最近{num_chat}轮对话" |
|
yield chatbot, history, msg + "," + construct_token_message( |
|
token_count if len(token_count) > 0 else [0], |
|
), token_count |
|
logging.info(msg) |
|
logging.info("减少token数量完毕") |
|
|