Spaces:
Sleeping
Sleeping
File size: 12,522 Bytes
8880bab 4b86909 bce8bc1 4b86909 bce8bc1 4b86909 bce8bc1 4b86909 bce8bc1 4b86909 bce8bc1 4b86909 bce8bc1 4b86909 bce8bc1 4b86909 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import gradio as gr
from requests import head
from transformer_vectorizer import TransformerVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
from concrete.ml.deployment import FHEModelClient
import numpy
import os
from pathlib import Path
import requests
import json
import base64
import subprocess
import shutil
import time
# This repository's directory
REPO_DIR = Path(__file__).parent
subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
# Wait 5 sec for the server to start
time.sleep(5)
# Encrypted data limit for the browser to display
# (encrypted data is too large to display in the browser)
ENCRYPTED_DATA_BROWSER_LIMIT = 500
N_USER_KEY_STORED = 20
model_names=['financial_rating','legal_rating']
FHE_MODEL_PATH = "deployment/financial_rating"
FHE_LEGAL_PATH = "deployment/legal_rating"
#FHE_LEGAL_PATH="deployment/legal_rating"
print("Loading the transformer model...")
# Initialize the transformer vectorizer
transformer_vectorizer = TransformerVectorizer()
vectorizer = TfidfVectorizer()
def clean_tmp_directory():
# Allow 20 user keys to be stored.
# Once that limitation is reached, deleted the oldest.
path_sub_directories = sorted([f for f in Path(".fhe_keys/").iterdir() if f.is_dir()], key=os.path.getmtime)
user_ids = []
if len(path_sub_directories) > N_USER_KEY_STORED:
n_files_to_delete = len(path_sub_directories) - N_USER_KEY_STORED
for p in path_sub_directories[:n_files_to_delete]:
user_ids.append(p.name)
shutil.rmtree(p)
list_files_tmp = Path("tmp/").iterdir()
# Delete all files related to user_id
for file in list_files_tmp:
for user_id in user_ids:
if file.name.endswith(f"{user_id}.npy"):
file.unlink()
model_nams=[]
def keygen(selected_tasks):
# Clean tmp directory if needed
clean_tmp_directory()
print("Initializing FHEModelClient...")
if not selected_tasks:
return "choose task first" # 修改提示信息为英文
if "legal_rating" in selected_tasks:
model_names.append('legal_rating')
if "financial_rating" in selected_tasks:
model_names.append('financial_rating')
# Let's create a user_id
user_id = numpy.random.randint(0, 2**32)
fhe_api = FHEModelClient(FHE_MODEL_PATH, f".fhe_keys/{user_id}")
fhe_api.load()
# Generate a fresh key
fhe_api.generate_private_and_evaluation_keys(force=True)
evaluation_key = fhe_api.get_serialized_evaluation_keys()
# Save evaluation_key in a file, since too large to pass through regular Gradio
# buttons, https://github.com/gradio-app/gradio/issues/1877
eval_key_path = Path(f"tmp/tmp_evaluation_key__{user_id}.npy")
numpy.save(eval_key_path, evaluation_key)
user_id_leagl = numpy.random.randint(0, 2**32)
fhe_api_legal= FHEModelClient(FHE_LEGAL_PATH, f".fhe_keys/{user_id_leagl}")
fhe_api_legal.load()
evaluation_keys = []
evaluation_keys.append(list(evaluation_key)[:ENCRYPTED_DATA_BROWSER_LIMIT])
#evaluation_keys.append(list(evaluation_key_legal)[:ENCRYPTED_DATA_BROWSER_LIMIT])
return [list(evaluation_key)[:ENCRYPTED_DATA_BROWSER_LIMIT], [user_id]]
def encode_quantize_encrypt(text, user_id):
if not user_id:
raise gr.Error("You need to generate FHE keys first.")
fhe_api = FHEModelClient(FHE_MODEL_PATH, f".fhe_keys/{user_id}")
fhe_api.load()
encodings = transformer_vectorizer.transform([text])
quantized_encodings = fhe_api.model.quantize_input(encodings).astype(numpy.uint8)
encrypted_quantized_encoding = fhe_api.quantize_encrypt_serialize(encodings)
# Save encrypted_quantized_encoding in a file, since too large to pass through regular Gradio
# buttons, https://github.com/gradio-app/gradio/issues/1877
numpy.save(f"tmp/tmp_encrypted_quantized_encoding_{user_id}.npy", encrypted_quantized_encoding)
# Compute size
encrypted_quantized_encoding_shorten = list(encrypted_quantized_encoding)[:ENCRYPTED_DATA_BROWSER_LIMIT]
encrypted_quantized_encoding_shorten_hex = ''.join(f'{i:02x}' for i in encrypted_quantized_encoding_shorten)
return (
encodings[0],
quantized_encodings[0],
encrypted_quantized_encoding_shorten_hex,
)
def run_fhe(user_id):
encoded_data_path = Path(f"tmp/tmp_encrypted_quantized_encoding_{user_id}.npy")
if not user_id:
raise gr.Error("You need to generate FHE keys first.")
if not encoded_data_path.is_file():
raise gr.Error("No encrypted data was found. Encrypt the data before trying to predict.")
# Read encrypted_quantized_encoding from the file
encrypted_quantized_encoding = numpy.load(encoded_data_path)
# Read evaluation_key from the file
evaluation_key = numpy.load(f"tmp/tmp_evaluation_key_{user_id}.npy")
# Use base64 to encode the encodings and evaluation key
encrypted_quantized_encoding = base64.b64encode(encrypted_quantized_encoding).decode()
encoded_evaluation_key = base64.b64encode(evaluation_key).decode()
query = {}
query["evaluation_key"] = encoded_evaluation_key
query["encrypted_encoding"] = encrypted_quantized_encoding
headers = {"Content-type": "application/json"}
response = requests.post(
"http://localhost:8000/predict_sentiment", data=json.dumps(query), headers=headers
)
encrypted_prediction = base64.b64decode(response.json()["encrypted_prediction"])
# Save encrypted_prediction in a file, since too large to pass through regular Gradio
# buttons, https://github.com/gradio-app/gradio/issues/1877
numpy.save(f"tmp/tmp_encrypted_prediction_{user_id}.npy", encrypted_prediction)
encrypted_prediction_shorten = list(encrypted_prediction)[:ENCRYPTED_DATA_BROWSER_LIMIT]
encrypted_prediction_shorten_hex = ''.join(f'{i:02x}' for i in encrypted_prediction_shorten)
return encrypted_prediction_shorten_hex
def decrypt_prediction(user_id):
encoded_data_path = Path(f"tmp/tmp_encrypted_prediction_{user_id}.npy")
if not user_id:
raise gr.Error("You need to generate FHE keys first.")
if not encoded_data_path.is_file():
raise gr.Error("No encrypted prediction was found. Run the prediction over the encrypted data first.")
# Read encrypted_prediction from the file
encrypted_prediction = numpy.load(encoded_data_path).tobytes()
fhe_api = FHEModelClient(FHE_MODEL_PATH, f".fhe_keys/{user_id}")
fhe_api.load()
# We need to retrieve the private key that matches the client specs (see issue #18)
fhe_api.generate_private_and_evaluation_keys(force=False)
predictions = fhe_api.deserialize_decrypt_dequantize(encrypted_prediction)
print(predictions)
return {
"low_relative": predictions[0][0],
"medium_relative": predictions[0][1],
"high_relative": predictions[0][2],
}
demo = gr.Blocks()
print("Starting the demo...")
with demo:
gr.Markdown(
"""
<p align="center">
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
</p>
<h2 align="center">Sentiment Analysis On Encrypted Data Using Homomorphic Encryption</h2>
<p align="center">
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a>
—
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a>
—
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community</a>
—
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a>
</p>
<p align="center">
<img src="https://user-images.githubusercontent.com/56846628/219329304-6868be9e-5ce8-4279-9123-4cb1bc0c2fb5.png" width="60%" height="60%">
</p>
"""
)
gr.Markdown(
"""
<p align="center">
</p>
<p align="center">
</p>
"""
)
gr.Markdown("## Notes")
gr.Markdown(
"""
- The private key is used to encrypt and decrypt the data and shall never be shared.
- The evaluation key is a public key that the server needs to process encrypted data.
"""
)
gr.Markdown("# Step 0: Select Tasks")
task_checkbox = gr.CheckboxGroup(
choices=["legal_rating", "financial_rating"],
label="select_tasks"
)
gr.Markdown("# Step 1: Generate the keys")
b_gen_key_and_install = gr.Button("Generate all the keys and send public part to server")
evaluation_key = gr.Textbox(
label="Evaluation key (truncated):",
max_lines=4,
interactive=False,
)
user_id = gr.Textbox(
label="",
max_lines=4,
interactive=False,
visible=False
)
gr.Markdown("# Step 2: Provide a message")
gr.Markdown("## Client side")
gr.Markdown(
"Enter a sensitive text message you received and would like to do sentiment analysis on (ideas: the last text message of your boss.... or lover)."
)
text = gr.Textbox(label="Enter a message:", value="I really like your work recently")
gr.Markdown("# Step 3: Encode the message with the private key")
b_encode_quantize_text = gr.Button(
"Encode, quantize and encrypt the text with transformer vectorizer, and send to server"
)
with gr.Row():
encoding = gr.Textbox(
label="Transformer representation:",
max_lines=4,
interactive=False,
)
quantized_encoding = gr.Textbox(
label="Quantized transformer representation:", max_lines=4, interactive=False
)
encrypted_quantized_encoding = gr.Textbox(
label="Encrypted quantized transformer representation (truncated):",
max_lines=4,
interactive=False,
)
gr.Markdown("# Step 4: Run the FHE evaluation")
gr.Markdown("## Server side")
gr.Markdown(
"The encrypted value is received by the server. Thanks to the evaluation key and to FHE, the server can compute the (encrypted) prediction directly over encrypted values. Once the computation is finished, the server returns the encrypted prediction to the client."
)
b_run_fhe = gr.Button("Run FHE execution there")
encrypted_prediction = gr.Textbox(
label="Encrypted prediction (truncated):",
max_lines=4,
interactive=False,
)
gr.Markdown("# Step 5: Decrypt the sentiment")
gr.Markdown("## Client side")
gr.Markdown(
"The encrypted sentiment is sent back to client, who can finally decrypt it with its private key. Only the client is aware of the original tweet and the prediction."
)
b_decrypt_prediction = gr.Button("Decrypt prediction")
labels_sentiment = gr.Label(label="Sentiment:")
# Button for key generation
b_gen_key_and_install.click(keygen, inputs=[task_checkbox], outputs=[evaluation_key, user_id])
# Button to quantize and encrypt
b_encode_quantize_text.click(
encode_quantize_encrypt,
inputs=[text, user_id],
outputs=[
encoding,
quantized_encoding,
encrypted_quantized_encoding,
],
)
# Button to send the encodings to the server using post at (localhost:8000/predict_sentiment)
b_run_fhe.click(run_fhe, inputs=[user_id], outputs=[encrypted_prediction])
# Button to decrypt the prediction on the client
b_decrypt_prediction.click(decrypt_prediction, inputs=[user_id], outputs=[labels_sentiment])
gr.Markdown(
"The app was built with [Concrete-ML](https://github.com/zama-ai/concrete-ml), a Privacy-Preserving Machine Learning (PPML) open-source set of tools by [Zama](https://zama.ai/). Try it yourself and don't forget to star on Github ⭐."
)
demo.launch(share=False) |