Spaces:
Sleeping
Sleeping
WenqingZhang
commited on
Commit
•
772819f
1
Parent(s):
23e0b1c
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
import gradio as gr
|
2 |
from requests import head
|
3 |
from transformer_vectorizer import TransformerVectorizer
|
4 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
-
import numpy as np
|
6 |
from concrete.ml.deployment import FHEModelClient
|
7 |
import numpy
|
8 |
import os
|
@@ -26,18 +24,12 @@ time.sleep(5)
|
|
26 |
# (encrypted data is too large to display in the browser)
|
27 |
ENCRYPTED_DATA_BROWSER_LIMIT = 500
|
28 |
N_USER_KEY_STORED = 20
|
29 |
-
model_names=['financial_rating','legal_rating']
|
30 |
-
|
31 |
-
|
32 |
FHE_MODEL_PATH = "deployment/financial_rating"
|
33 |
-
FHE_LEGAL_PATH = "deployment/legal_rating"
|
34 |
-
#FHE_LEGAL_PATH="deployment/legal_rating"
|
35 |
|
36 |
print("Loading the transformer model...")
|
37 |
|
38 |
# Initialize the transformer vectorizer
|
39 |
transformer_vectorizer = TransformerVectorizer()
|
40 |
-
vectorizer = TfidfVectorizer()
|
41 |
|
42 |
def clean_tmp_directory():
|
43 |
# Allow 20 user keys to be stored.
|
@@ -57,69 +49,38 @@ def clean_tmp_directory():
|
|
57 |
for user_id in user_ids:
|
58 |
if file.name.endswith(f"{user_id}.npy"):
|
59 |
file.unlink()
|
60 |
-
mes=[]
|
61 |
|
62 |
-
|
|
|
63 |
# Clean tmp directory if needed
|
64 |
clean_tmp_directory()
|
65 |
|
66 |
print("Initializing FHEModelClient...")
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
if not selected_tasks:
|
71 |
-
return "choose a task first" # 修改提示信息为英文
|
72 |
user_id = numpy.random.randint(0, 2**32)
|
73 |
-
|
74 |
-
|
75 |
-
# Let's create a user_id
|
76 |
-
|
77 |
-
fhe_api= FHEModelClient(FHE_LEGAL_PATH, f".fhe_keys/{user_id}")
|
78 |
-
|
79 |
|
80 |
-
if "financial_rating" in selected_tasks:
|
81 |
-
model_names.append('financial_rating')
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
# Let's create a user_id
|
86 |
-
|
87 |
-
|
88 |
-
fhe_api.load()
|
89 |
-
|
90 |
-
|
91 |
-
# Generate a fresh key
|
92 |
fhe_api.generate_private_and_evaluation_keys(force=True)
|
93 |
evaluation_key = fhe_api.get_serialized_evaluation_keys()
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
numpy.save(f"tmp/tmp_evaluation_key_{user_id}.npy", evaluation_key)
|
98 |
|
99 |
return [list(evaluation_key)[:ENCRYPTED_DATA_BROWSER_LIMIT], user_id]
|
100 |
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
def encode_quantize_encrypt(text, user_id):
|
106 |
if not user_id:
|
107 |
raise gr.Error("You need to generate FHE keys first.")
|
108 |
-
|
109 |
-
|
110 |
-
encodings =vectorizer.fit_transform([text]).toarray()
|
111 |
-
if encodings.shape[1] < 1736:
|
112 |
-
# 在后面填充零
|
113 |
-
padding = np.zeros((1, 1736 - encodings.shape[1]))
|
114 |
-
encodings = np.hstack((encodings, padding))
|
115 |
-
elif encodings.shape[1] > 1736:
|
116 |
-
# 截取前1736列
|
117 |
-
encodings = encodings[:, :1736]
|
118 |
-
else:
|
119 |
-
fhe_api = FHEModelClient(FHE_MODEL_PATH, f".fhe_keys/{user_id}")
|
120 |
-
encodings = transformer_vectorizer.transform([text])
|
121 |
-
|
122 |
fhe_api.load()
|
|
|
123 |
quantized_encodings = fhe_api.model.quantize_input(encodings).astype(numpy.uint8)
|
124 |
encrypted_quantized_encoding = fhe_api.quantize_encrypt_serialize(encodings)
|
125 |
|
@@ -137,7 +98,6 @@ def encode_quantize_encrypt(text, user_id):
|
|
137 |
)
|
138 |
|
139 |
|
140 |
-
|
141 |
def run_fhe(user_id):
|
142 |
encoded_data_path = Path(f"tmp/tmp_encrypted_quantized_encoding_{user_id}.npy")
|
143 |
if not user_id:
|
@@ -159,10 +119,9 @@ def run_fhe(user_id):
|
|
159 |
query["evaluation_key"] = encoded_evaluation_key
|
160 |
query["encrypted_encoding"] = encrypted_quantized_encoding
|
161 |
headers = {"Content-type": "application/json"}
|
162 |
-
|
163 |
response = requests.post(
|
164 |
-
|
165 |
-
|
166 |
encrypted_prediction = base64.b64decode(response.json()["encrypted_prediction"])
|
167 |
|
168 |
# Save encrypted_prediction in a file, since too large to pass through regular Gradio
|
@@ -183,9 +142,6 @@ def decrypt_prediction(user_id):
|
|
183 |
# Read encrypted_prediction from the file
|
184 |
encrypted_prediction = numpy.load(encoded_data_path).tobytes()
|
185 |
|
186 |
-
if "legal_rating" in model_names:
|
187 |
-
fhe_api = FHEModelClient(FHE_LEGAL_PATH, f".fhe_keys/{user_id}")
|
188 |
-
|
189 |
fhe_api = FHEModelClient(FHE_MODEL_PATH, f".fhe_keys/{user_id}")
|
190 |
fhe_api.load()
|
191 |
|
@@ -193,12 +149,10 @@ def decrypt_prediction(user_id):
|
|
193 |
fhe_api.generate_private_and_evaluation_keys(force=False)
|
194 |
|
195 |
predictions = fhe_api.deserialize_decrypt_dequantize(encrypted_prediction)
|
196 |
-
print(predictions)
|
197 |
-
|
198 |
return {
|
199 |
-
"
|
200 |
-
"
|
201 |
-
"
|
202 |
}
|
203 |
|
204 |
|
@@ -210,12 +164,22 @@ with demo:
|
|
210 |
|
211 |
gr.Markdown(
|
212 |
"""
|
213 |
-
|
214 |
-
<
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
"""
|
220 |
)
|
221 |
|
@@ -236,24 +200,10 @@ with demo:
|
|
236 |
- The evaluation key is a public key that the server needs to process encrypted data.
|
237 |
"""
|
238 |
)
|
239 |
-
|
240 |
-
"""
|
241 |
-
<hr/>
|
242 |
-
"""
|
243 |
-
)
|
244 |
-
gr.Markdown("# Step 0: Select Task")
|
245 |
-
task_checkbox = gr.CheckboxGroup(
|
246 |
-
choices=["legal_rating", "financial_rating"],
|
247 |
-
label="select_tasks"
|
248 |
-
)
|
249 |
-
gr.Markdown(
|
250 |
-
"""
|
251 |
-
<hr/>
|
252 |
-
"""
|
253 |
-
)
|
254 |
gr.Markdown("# Step 1: Generate the keys")
|
255 |
|
256 |
-
b_gen_key_and_install = gr.Button("Generate
|
257 |
|
258 |
evaluation_key = gr.Textbox(
|
259 |
label="Evaluation key (truncated):",
|
@@ -267,46 +217,34 @@ with demo:
|
|
267 |
interactive=False,
|
268 |
visible=False
|
269 |
)
|
270 |
-
|
271 |
-
|
272 |
-
<hr/>
|
273 |
-
"""
|
274 |
-
)
|
275 |
-
gr.Markdown("# Step 2: Provide a contract or clause")
|
276 |
gr.Markdown("## Client side")
|
277 |
gr.Markdown(
|
278 |
-
"Enter a
|
279 |
-
)
|
280 |
-
text = gr.Textbox(label="Enter some words:", value="The Employee is entitled to two weeks of paid vacation annually, to be scheduled at the mutual convenience of the Employee and Employer.")
|
281 |
-
gr.Markdown(
|
282 |
-
"""
|
283 |
-
<hr/>
|
284 |
-
"""
|
285 |
)
|
|
|
|
|
286 |
gr.Markdown("# Step 3: Encode the message with the private key")
|
287 |
b_encode_quantize_text = gr.Button(
|
288 |
-
"Encode, quantize and encrypt the text with vectorizer, and send to server"
|
289 |
)
|
290 |
|
291 |
with gr.Row():
|
292 |
encoding = gr.Textbox(
|
293 |
-
label="
|
294 |
max_lines=4,
|
295 |
interactive=False,
|
296 |
)
|
297 |
quantized_encoding = gr.Textbox(
|
298 |
-
label="Quantized
|
299 |
)
|
300 |
encrypted_quantized_encoding = gr.Textbox(
|
301 |
-
label="Encrypted quantized representation (truncated):",
|
302 |
max_lines=4,
|
303 |
interactive=False,
|
304 |
)
|
305 |
-
|
306 |
-
"""
|
307 |
-
<hr/>
|
308 |
-
"""
|
309 |
-
)
|
310 |
gr.Markdown("# Step 4: Run the FHE evaluation")
|
311 |
gr.Markdown("## Server side")
|
312 |
gr.Markdown(
|
@@ -319,22 +257,18 @@ with demo:
|
|
319 |
max_lines=4,
|
320 |
interactive=False,
|
321 |
)
|
322 |
-
|
323 |
-
|
324 |
-
<hr/>
|
325 |
-
"""
|
326 |
-
)
|
327 |
-
gr.Markdown("# Step 5: Decrypt the class")
|
328 |
gr.Markdown("## Client side")
|
329 |
gr.Markdown(
|
330 |
"The encrypted sentiment is sent back to client, who can finally decrypt it with its private key. Only the client is aware of the original tweet and the prediction."
|
331 |
)
|
332 |
b_decrypt_prediction = gr.Button("Decrypt prediction")
|
333 |
|
334 |
-
labels_sentiment = gr.Label(label="
|
335 |
|
336 |
# Button for key generation
|
337 |
-
b_gen_key_and_install.click(keygen, inputs=[
|
338 |
|
339 |
# Button to quantize and encrypt
|
340 |
b_encode_quantize_text.click(
|
|
|
1 |
import gradio as gr
|
2 |
from requests import head
|
3 |
from transformer_vectorizer import TransformerVectorizer
|
|
|
|
|
4 |
from concrete.ml.deployment import FHEModelClient
|
5 |
import numpy
|
6 |
import os
|
|
|
24 |
# (encrypted data is too large to display in the browser)
|
25 |
ENCRYPTED_DATA_BROWSER_LIMIT = 500
|
26 |
N_USER_KEY_STORED = 20
|
|
|
|
|
|
|
27 |
FHE_MODEL_PATH = "deployment/financial_rating"
|
|
|
|
|
28 |
|
29 |
print("Loading the transformer model...")
|
30 |
|
31 |
# Initialize the transformer vectorizer
|
32 |
transformer_vectorizer = TransformerVectorizer()
|
|
|
33 |
|
34 |
def clean_tmp_directory():
|
35 |
# Allow 20 user keys to be stored.
|
|
|
49 |
for user_id in user_ids:
|
50 |
if file.name.endswith(f"{user_id}.npy"):
|
51 |
file.unlink()
|
|
|
52 |
|
53 |
+
|
54 |
+
def keygen():
|
55 |
# Clean tmp directory if needed
|
56 |
clean_tmp_directory()
|
57 |
|
58 |
print("Initializing FHEModelClient...")
|
59 |
|
60 |
+
# Let's create a user_id
|
|
|
|
|
|
|
61 |
user_id = numpy.random.randint(0, 2**32)
|
62 |
+
fhe_api = FHEModelClient(FHE_MODEL_PATH, f".fhe_keys/{user_id}")
|
63 |
+
fhe_api.load()
|
|
|
|
|
|
|
|
|
64 |
|
|
|
|
|
65 |
|
66 |
+
# Generate a fresh key
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
fhe_api.generate_private_and_evaluation_keys(force=True)
|
68 |
evaluation_key = fhe_api.get_serialized_evaluation_keys()
|
69 |
+
|
70 |
+
# Save evaluation_key in a file, since too large to pass through regular Gradio
|
71 |
+
# buttons, https://github.com/gradio-app/gradio/issues/1877
|
72 |
numpy.save(f"tmp/tmp_evaluation_key_{user_id}.npy", evaluation_key)
|
73 |
|
74 |
return [list(evaluation_key)[:ENCRYPTED_DATA_BROWSER_LIMIT], user_id]
|
75 |
|
76 |
|
|
|
|
|
|
|
77 |
def encode_quantize_encrypt(text, user_id):
|
78 |
if not user_id:
|
79 |
raise gr.Error("You need to generate FHE keys first.")
|
80 |
+
|
81 |
+
fhe_api = FHEModelClient(FHE_MODEL_PATH, f".fhe_keys/{user_id}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
fhe_api.load()
|
83 |
+
encodings = transformer_vectorizer.transform([text])
|
84 |
quantized_encodings = fhe_api.model.quantize_input(encodings).astype(numpy.uint8)
|
85 |
encrypted_quantized_encoding = fhe_api.quantize_encrypt_serialize(encodings)
|
86 |
|
|
|
98 |
)
|
99 |
|
100 |
|
|
|
101 |
def run_fhe(user_id):
|
102 |
encoded_data_path = Path(f"tmp/tmp_encrypted_quantized_encoding_{user_id}.npy")
|
103 |
if not user_id:
|
|
|
119 |
query["evaluation_key"] = encoded_evaluation_key
|
120 |
query["encrypted_encoding"] = encrypted_quantized_encoding
|
121 |
headers = {"Content-type": "application/json"}
|
|
|
122 |
response = requests.post(
|
123 |
+
"http://localhost:8000/predict_sentiment", data=json.dumps(query), headers=headers
|
124 |
+
)
|
125 |
encrypted_prediction = base64.b64decode(response.json()["encrypted_prediction"])
|
126 |
|
127 |
# Save encrypted_prediction in a file, since too large to pass through regular Gradio
|
|
|
142 |
# Read encrypted_prediction from the file
|
143 |
encrypted_prediction = numpy.load(encoded_data_path).tobytes()
|
144 |
|
|
|
|
|
|
|
145 |
fhe_api = FHEModelClient(FHE_MODEL_PATH, f".fhe_keys/{user_id}")
|
146 |
fhe_api.load()
|
147 |
|
|
|
149 |
fhe_api.generate_private_and_evaluation_keys(force=False)
|
150 |
|
151 |
predictions = fhe_api.deserialize_decrypt_dequantize(encrypted_prediction)
|
|
|
|
|
152 |
return {
|
153 |
+
"negative": predictions[0][0],
|
154 |
+
"neutral": predictions[0][1],
|
155 |
+
"positive": predictions[0][2],
|
156 |
}
|
157 |
|
158 |
|
|
|
164 |
|
165 |
gr.Markdown(
|
166 |
"""
|
167 |
+
<p align="center">
|
168 |
+
<img width=200 src="https://user-images.githubusercontent.com/5758427/197816413-d9cddad3-ba38-4793-847d-120975e1da11.png">
|
169 |
+
</p>
|
170 |
+
<h2 align="center">Sentiment Analysis On Encrypted Data Using Homomorphic Encryption</h2>
|
171 |
+
<p align="center">
|
172 |
+
<a href="https://github.com/zama-ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197972109-faaaff3e-10e2-4ab6-80f5-7531f7cfb08f.png">Concrete-ML</a>
|
173 |
+
—
|
174 |
+
<a href="https://docs.zama.ai/concrete-ml"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197976802-fddd34c5-f59a-48d0-9bff-7ad1b00cb1fb.png">Documentation</a>
|
175 |
+
—
|
176 |
+
<a href="https://zama.ai/community"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197977153-8c9c01a7-451a-4993-8e10-5a6ed5343d02.png">Community</a>
|
177 |
+
—
|
178 |
+
<a href="https://twitter.com/zama_fhe"> <img style="vertical-align: middle; display:inline-block; margin-right: 3px;" width=15 src="https://user-images.githubusercontent.com/5758427/197975044-bab9d199-e120-433b-b3be-abd73b211a54.png">@zama_fhe</a>
|
179 |
+
</p>
|
180 |
+
<p align="center">
|
181 |
+
<img src="https://user-images.githubusercontent.com/56846628/219329304-6868be9e-5ce8-4279-9123-4cb1bc0c2fb5.png" width="60%" height="60%">
|
182 |
+
</p>
|
183 |
"""
|
184 |
)
|
185 |
|
|
|
200 |
- The evaluation key is a public key that the server needs to process encrypted data.
|
201 |
"""
|
202 |
)
|
203 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
gr.Markdown("# Step 1: Generate the keys")
|
205 |
|
206 |
+
b_gen_key_and_install = gr.Button("Generate the keys and send public part to server")
|
207 |
|
208 |
evaluation_key = gr.Textbox(
|
209 |
label="Evaluation key (truncated):",
|
|
|
217 |
interactive=False,
|
218 |
visible=False
|
219 |
)
|
220 |
+
|
221 |
+
gr.Markdown("# Step 2: Provide a message")
|
|
|
|
|
|
|
|
|
222 |
gr.Markdown("## Client side")
|
223 |
gr.Markdown(
|
224 |
+
"Enter a sensitive text message you received and would like to do sentiment analysis on (ideas: the last text message of your boss.... or lover)."
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
)
|
226 |
+
text = gr.Textbox(label="Enter a message:", value="I really like your work recently")
|
227 |
+
|
228 |
gr.Markdown("# Step 3: Encode the message with the private key")
|
229 |
b_encode_quantize_text = gr.Button(
|
230 |
+
"Encode, quantize and encrypt the text with transformer vectorizer, and send to server"
|
231 |
)
|
232 |
|
233 |
with gr.Row():
|
234 |
encoding = gr.Textbox(
|
235 |
+
label="Transformer representation:",
|
236 |
max_lines=4,
|
237 |
interactive=False,
|
238 |
)
|
239 |
quantized_encoding = gr.Textbox(
|
240 |
+
label="Quantized transformer representation:", max_lines=4, interactive=False
|
241 |
)
|
242 |
encrypted_quantized_encoding = gr.Textbox(
|
243 |
+
label="Encrypted quantized transformer representation (truncated):",
|
244 |
max_lines=4,
|
245 |
interactive=False,
|
246 |
)
|
247 |
+
|
|
|
|
|
|
|
|
|
248 |
gr.Markdown("# Step 4: Run the FHE evaluation")
|
249 |
gr.Markdown("## Server side")
|
250 |
gr.Markdown(
|
|
|
257 |
max_lines=4,
|
258 |
interactive=False,
|
259 |
)
|
260 |
+
|
261 |
+
gr.Markdown("# Step 5: Decrypt the sentiment")
|
|
|
|
|
|
|
|
|
262 |
gr.Markdown("## Client side")
|
263 |
gr.Markdown(
|
264 |
"The encrypted sentiment is sent back to client, who can finally decrypt it with its private key. Only the client is aware of the original tweet and the prediction."
|
265 |
)
|
266 |
b_decrypt_prediction = gr.Button("Decrypt prediction")
|
267 |
|
268 |
+
labels_sentiment = gr.Label(label="Sentiment:")
|
269 |
|
270 |
# Button for key generation
|
271 |
+
b_gen_key_and_install.click(keygen, inputs=[], outputs=[evaluation_key, user_id])
|
272 |
|
273 |
# Button to quantize and encrypt
|
274 |
b_encode_quantize_text.click(
|