Spaces:
Sleeping
Sleeping
WenqingZhang
commited on
Commit
•
a03163b
1
Parent(s):
1acdd75
Upload transformer_vectorizer.py
Browse files- transformer_vectorizer.py +58 -0
transformer_vectorizer.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Let's import a few requirements
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
4 |
+
import numpy
|
5 |
+
|
6 |
+
class TransformerVectorizer:
|
7 |
+
def __init__(self):
|
8 |
+
# Load the tokenizer (converts text to tokens)
|
9 |
+
self.tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment-latest")
|
10 |
+
|
11 |
+
# Load the pre-trained model
|
12 |
+
self.transformer_model = AutoModelForSequenceClassification.from_pretrained(
|
13 |
+
"cardiffnlp/twitter-roberta-base-sentiment-latest"
|
14 |
+
)
|
15 |
+
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
16 |
+
|
17 |
+
def text_to_tensor(
|
18 |
+
self,
|
19 |
+
texts: list,
|
20 |
+
) -> numpy.ndarray:
|
21 |
+
"""Function that transforms a list of texts to their learned representation.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
list_text_X (list): List of texts to be transformed.
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
numpy.ndarray: Transformed list of texts.
|
28 |
+
"""
|
29 |
+
# First, tokenize all the input text
|
30 |
+
tokenized_text_X_train = self.tokenizer.batch_encode_plus(
|
31 |
+
texts, return_tensors="pt"
|
32 |
+
)["input_ids"]
|
33 |
+
|
34 |
+
# Depending on the hardware used, the number of examples to be processed can be reduced
|
35 |
+
# Here we split the data into 100 examples per batch
|
36 |
+
tokenized_text_X_train_split = torch.split(tokenized_text_X_train, split_size_or_sections=50)
|
37 |
+
|
38 |
+
# Send the model to the device
|
39 |
+
transformer_model = self.transformer_model.to(self.device)
|
40 |
+
output_hidden_states_list = []
|
41 |
+
|
42 |
+
for tokenized_x in tokenized_text_X_train_split:
|
43 |
+
# Pass the tokens through the transformer model and get the hidden states
|
44 |
+
# Only keep the last hidden layer state for now
|
45 |
+
output_hidden_states = transformer_model(tokenized_x.to(self.device), output_hidden_states=True)[
|
46 |
+
1
|
47 |
+
][-1]
|
48 |
+
# Average over the tokens axis to get a representation at the text level.
|
49 |
+
output_hidden_states = output_hidden_states.mean(dim=1)
|
50 |
+
output_hidden_states = output_hidden_states.detach().cpu().numpy()
|
51 |
+
output_hidden_states_list.append(output_hidden_states)
|
52 |
+
|
53 |
+
self.encodings = numpy.concatenate(output_hidden_states_list, axis=0)
|
54 |
+
return self.encodings
|
55 |
+
|
56 |
+
def transform(self, texts: list):
|
57 |
+
return self.text_to_tensor(texts)
|
58 |
+
|