File size: 9,867 Bytes
fb3b924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import re
import json
import requests
import pandas as pd
from tqdm import tqdm
from bs4 import BeautifulSoup
from huggingface_hub import HfApi, list_models, list_datasets, list_spaces
import gradio as gr

api = HfApi()

def get_models(org_name, which_one):
  all_list = []
  if which_one == "models":
    things = api.list_models(author=org_name)
  elif which_one == "datasets":
    things = api.list_datasets(author=org_name)
  elif which_one == "spaces":
     things = api.list_spaces(author=org_name)

  for i in things:
    i = i.__dict__
    json_format_data = {"id": i['id'], "downloads": i['downloads'], "likes": i['likes']} if which_one != "spaces" else {"id": i['id'], "downloads": 0, "likes": i['likes']}

    all_list.append(json_format_data)


  df_all_list = (pd.DataFrame(all_list))

  return df_all_list

def get_most(df_for_most_function):
  download_sorted_df = df_for_most_function.sort_values(by=['downloads'], ascending=False)
  most_downloaded = download_sorted_df.iloc[0]

  like_sorted_df = df_for_most_function.sort_values(by=['likes'], ascending=False)
  most_liked = like_sorted_df.iloc[0]

  return {"Most Download": {"id": most_downloaded['id'], "downloads": most_downloaded['downloads'], "likes": most_downloaded['likes']}, "Most Likes": {"id": most_liked['id'], "downloads": most_liked['downloads'], "likes": most_liked['likes']}}

def get_sum(df_for_sum_function):
  sum_downloads = sum(df_for_sum_function['downloads'].tolist())
  sum_likes = sum(df_for_sum_function['likes'].tolist())

  return {"Downloads": sum_downloads, "Likes": sum_likes}

def get_openllm_leaderboard():
    url = 'https://huggingfaceh4-open-llm-leaderboard.hf.space/'
    response = requests.get(url)
    soup = BeautifulSoup(response.content, 'html.parser')
    script_elements = soup.find_all('script')
    data = json.loads(str(script_elements[1])[31:-10])

    component_index = 11
    pattern = r'href="([^"]*)"'
    zero_or_one = 1

    result_list = []
    i = 0
    while True:
        try:
            unfiltered = data['components'][component_index]['props']['value']['data'][i][zero_or_one].rstrip("\n")
            normal_name = re.search(pattern, unfiltered).group(1)
            normal_name = "/".join(normal_name.split("/")[-2:])
            result_list.append(normal_name)
            i += 1
        except (IndexError, AttributeError):
            return result_list

def get_ranking(model_list, target_org):
    for index, model in enumerate(model_list):
      if model.split("/")[0].lower() == target_org.lower():
          return [index+1, model]
    return "Not Found"

def make_leaderboard(orgs, which_one):
    data_rows = []
    open_llm_leaderboard = get_openllm_leaderboard() if which_one == "models" else None

    for org in tqdm(orgs, desc=f"Scraping Organizations ({which_one})", position=0, leave=True):
        df = get_models(org, which_one)
        if len(df) == 0:
          continue
        num_things = len(df)
        sum_info = get_sum(df)
        most_info = get_most(df)

        if which_one == "models":
          open_llm_leaderboard_get_org = get_ranking(open_llm_leaderboard, org)
          data_rows.append({
              "Organization Name": org,
              "Total Downloads": sum_info["Downloads"],
              "Total Likes": sum_info["Likes"],
              "Number of Models": num_things,
              "Best Model On Open LLM Leaderboard": open_llm_leaderboard_get_org[1] if open_llm_leaderboard_get_org != "Not Found" else open_llm_leaderboard_get_org,
              "Best Rank On Open LLM Leaderboard": open_llm_leaderboard_get_org[0] if open_llm_leaderboard_get_org != "Not Found" else open_llm_leaderboard_get_org,
              "Average Downloads per Model": int(sum_info["Downloads"] / num_things) if num_things != 0 else 0,
              "Average Likes per Model": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
              "Most Downloaded Model": most_info["Most Download"]["id"],
              "Most Download Count": most_info["Most Download"]["downloads"],
              "Most Liked Model": most_info["Most Likes"]["id"],
              "Most Like Count": most_info["Most Likes"]["likes"]
          })
        elif which_one == "datasets":
          data_rows.append({
              "Organization Name": org,
              "Total Downloads": sum_info["Downloads"],
              "Total Likes": sum_info["Likes"],
              "Number of Datasets": num_things,
              "Average Downloads per Dataset": int(sum_info["Downloads"] / num_things) if num_things != 0 else 0,
              "Average Likes per Dataset": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
              "Most Downloaded Dataset": most_info["Most Download"]["id"],
              "Most Download Count": most_info["Most Download"]["downloads"],
              "Most Liked Dataset": most_info["Most Likes"]["id"],
              "Most Like Count": most_info["Most Likes"]["likes"]
          })

        elif which_one == "spaces":
          data_rows.append({
              "Organization Name": org,
              "Total Likes": sum_info["Likes"],
              "Number of Spaces": num_things,
              "Average Likes per Space": int(sum_info["Likes"] / num_things) if num_things != 0 else 0,
              "Most Liked Space": most_info["Most Likes"]["id"],
              "Most Like Count": most_info["Most Likes"]["likes"]
          })

    leaderboard = pd.DataFrame(data_rows)
    leaderboard.insert(0, "Serial Number", range(1, len(leaderboard) + 1))
    return leaderboard

"""# Gradio başlasın

"""

with open("org_names.txt", "r") as f:
  org_names_in_list = [i.rstrip("\n") for i in f.readlines()]


INTRODUCTION_TEXT = f"""
🎯 The Organization Leaderboard aims to track organizations ranking. This space is inspired by [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)

## Dataframes Available:

- 🏛️ Models

- 📊 Datasets

- 🚀 Spaces

## Backend

🛠️ The leaderboard's backend mainly runs the [Hugging Face Hub API](https://huggingface.co/docs/huggingface_hub/v0.5.1/en/package_reference/hf_api).

🛠️ Organization names are being retrieved using web scrabing ([HUggingface Organizations](https://huggingface.co/organizations))

**🌐 Note:** In model's dataframe there is some columns related to [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). These datas are also being retrieved with web scrabing.

"""

def clickable(x, which_one):
    if which_one == "models":
      if x != "Not Found":
          return f'<a target="_blank" href="https://huggingface.co/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'
      else:
          return "Not Found"
    else:
        return f'<a target="_blank" href="https://huggingface.co/{which_one}/{x}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{x}</a>'

def models_df_to_clickable(df, columns, which_one):
    for column in columns:
        if column == "Organization Name":
          df[column] = df[column].apply(lambda x: clickable(x, "models"))
        df[column] = df[column].apply(lambda x: clickable(x, which_one))
    return df

demo = gr.Blocks()

with gr.Blocks() as demo:
      gr.Markdown("""<h1 align="center" id="space-title">🤗 Organization Leaderboard</h1>""")
      gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

      with gr.TabItem("🏛️ Models", id=1):

          columns_to_convert = ["Organization Name", "Best Model On Open LLM Leaderboard", "Most Downloaded Model", "Most Liked Model"]
          models_df = make_leaderboard(org_names_in_list, "models")
          models_df = models_df_to_clickable(models_df, columns_to_convert, "models")

          headers = ["🔢 Serial Number", "🏢 Organization Name", "📥 Total Downloads", "👍 Total Likes", "🤖 Number of Models", "🏆 Best Model On Open LLM Leaderboard", "🥇 Best Rank On Open LLM Leaderboard", "📊 Average Downloads per Model", "📈 Average Likes per Model", "🚀 Most Downloaded Model", "📈 Most Download Count", "❤️ Most Liked Model", "👍 Most Like Count"]
          gr.Dataframe(models_df, headers=headers, interactive=True, datatype=["str", "markdown", "str", "str", "str", "markdown", "str", "str", "str", "markdown", "str", "markdown", "str"])

      with gr.TabItem("📊 Dataset", id=2):
          columns_to_convert = ["Organization Name", "Most Downloaded Dataset", "Most Liked Dataset"]
          dataset_df = make_leaderboard(org_names_in_list, "datasets")
          dataset_df = models_df_to_clickable(dataset_df, columns_to_convert, "datasets")

          headers = ["🔢 Serial Number", "🏢 Organization Name", "📥 Total Downloads", "👍 Total Likes", "📊 Number of Datasets", "📊 Average Downloads per Dataset", "📈 Average Likes per Dataset", "🚀 Most Downloaded Dataset", "📈 Most Download Count", "❤️ Most Liked Dataset", "👍 Most Like Count"]
          gr.Dataframe(dataset_df, headers=headers, interactive=False, datatype=["str", "markdown", "str", "str", "str", "str", "str", "markdown", "str", "markdown", "str"])

      with gr.TabItem("🚀 Spaces", id=3):
          columns_to_convert = ["Organization Name", "Most Liked Space"]

          spaces_df = make_leaderboard(org_names_in_list, "spaces")
          spaces_df = models_df_to_clickable(spaces_df, columns_to_convert, "spaces")

          headers = ["🔢 Serial Number", "🏢 Organization Name", "👍 Total Likes", "🚀 Number of Spaces", "📈 Average Likes per Space", "❤️ Most Liked Space", "👍 Most Like Count"]
          gr.Dataframe(spaces_df, headers=headers, interactive=False,  datatype=["str", "markdown", "str", "str", "str", "markdown", "str"])

demo.launch()