Aidan-Bench / main.py
Whiteshadow12's picture
x
a4e6a71
raw
history blame
4.79 kB
import numpy as np
from models import chat_with_model, embed
from prompts import questions, create_gen_prompt, create_judge_prompt
from colorama import Fore, Style
import time
from concurrent.futures import ThreadPoolExecutor, as_completed
import threading
import argparse
def parse_arguments():
parser = argparse.ArgumentParser(description="Benchmark a language model.")
parser.add_argument("model_name", type=str, help="Name of the model to benchmark")
parser.add_argument("--single-threaded", action="store_true", help="Run in single-threaded mode")
return parser.parse_args()
def benchmark_model(model_name, multithreaded=False):
if multithreaded:
return benchmark_model_multithreaded(model_name)
else:
return benchmark_model_sequential(model_name)
def process_question(question, model_name):
start_time = time.time()
print(Fore.RED + question + Style.RESET_ALL)
previous_answers = []
question_novelty = 0
try:
while True:
gen_prompt = create_gen_prompt(question, previous_answers)
try:
new_answer = chat_with_model(prompt=gen_prompt, model=model_name)
except Exception as e:
print(Fore.RED + f"Error generating answer: {str(e)}" + Style.RESET_ALL)
break
judge_prompt = create_judge_prompt(question, new_answer)
judge = "openai/gpt-4o-mini"
try:
judge_response = chat_with_model(prompt=judge_prompt, model=judge)
except Exception as e:
print(Fore.RED + f"Error getting judge response: {str(e)}" + Style.RESET_ALL)
break
coherence_score = int(judge_response.split("<coherence_score>")[
1].split("</coherence_score>")[0])
if coherence_score <= 3:
print(
Fore.YELLOW + "Output is incoherent. Moving to next question." + Style.RESET_ALL)
break
novelty_score = get_novelty_score(new_answer, previous_answers)
if novelty_score < 0.1:
print(
Fore.YELLOW + "Output is redundant. Moving to next question." + Style.RESET_ALL)
break
print(f"New Answer:\n{new_answer}")
print(Fore.GREEN + f"Coherence Score: {coherence_score}")
print(f"Novelty Score: {novelty_score}" + Style.RESET_ALL)
previous_answers.append(new_answer)
question_novelty += novelty_score
except Exception as e:
print(Fore.RED + f"Unexpected error processing question: {str(e)}" + Style.RESET_ALL)
time_taken = time.time() - start_time
print(Fore.BLUE)
print(f"Total novelty score for this question: {question_novelty}")
print(f"Time taken: {time_taken} seconds")
print(Style.RESET_ALL)
return question_novelty
def get_novelty_score(new_answer: str, previous_answers: list, openai_api_key=None):
new_embedding = embed(new_answer, openai_api_key)
# If there are no previous answers, return maximum novelty
if not previous_answers:
return 1.0
previous_embeddings = [embed(answer, openai_api_key) for answer in previous_answers]
similarities = [
np.dot(new_embedding, prev_embedding) /
(np.linalg.norm(new_embedding) * np.linalg.norm(prev_embedding))
for prev_embedding in previous_embeddings
]
max_similarity = max(similarities)
novelty = 1 - max_similarity
return novelty
def benchmark_model_multithreaded(model_name):
novelty_score = 0
print_lock = threading.Lock()
with ThreadPoolExecutor(max_workers=len(questions)) as executor:
future_to_question = {executor.submit(
process_question, question, model_name): question for question in questions}
for future in as_completed(future_to_question):
question = future_to_question[future]
question_novelty = future.result()
with print_lock:
novelty_score += question_novelty
print(Fore.YELLOW)
print(f"Total novelty score across all questions: {novelty_score}")
print(Style.RESET_ALL)
return novelty_score
def benchmark_model_sequential(model_name):
novelty_score = 0
for question in questions:
question_novelty = process_question(question, model_name)
novelty_score += question_novelty
print(Fore.YELLOW)
print(f"Total novelty score across all questions: {novelty_score}")
print(Style.RESET_ALL)
return novelty_score
if __name__ == "__main__":
args = parse_arguments()
benchmark_model(args.model_name, multithreaded=not args.single_threaded)