Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,147 Bytes
37aeb5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
from typing import Any, Dict, Optional
import torch
from diffusers.models.attention_processor import Attention
def construct_pix2pix_attention(hidden_states_dim, norm_type="none"):
if norm_type == "layernorm":
norm = torch.nn.LayerNorm(hidden_states_dim)
else:
norm = torch.nn.Identity()
attention = Attention(
query_dim=hidden_states_dim,
heads=8,
dim_head=hidden_states_dim // 8,
bias=True,
)
# NOTE: xformers 0.22 does not support batchsize >= 4096
attention.xformers_not_supported = True # hacky solution
return norm, attention
class ExtraAttnProc(torch.nn.Module):
def __init__(
self,
chained_proc,
enabled=False,
name=None,
mode='extract',
with_proj_in=False,
proj_in_dim=768,
target_dim=None,
pixel_wise_crosspond=False,
norm_type="none", # none or layernorm
crosspond_effect_on="all", # all or first
crosspond_chain_pos="parralle", # before or parralle or after
simple_3d=False,
views=4,
) -> None:
super().__init__()
self.enabled = enabled
self.chained_proc = chained_proc
self.name = name
self.mode = mode
self.with_proj_in=with_proj_in
self.proj_in_dim = proj_in_dim
self.target_dim = target_dim or proj_in_dim
self.hidden_states_dim = self.target_dim
self.pixel_wise_crosspond = pixel_wise_crosspond
self.crosspond_effect_on = crosspond_effect_on
self.crosspond_chain_pos = crosspond_chain_pos
self.views = views
self.simple_3d = simple_3d
if self.with_proj_in and self.enabled:
self.in_linear = torch.nn.Linear(self.proj_in_dim, self.target_dim, bias=False)
if self.target_dim == self.proj_in_dim:
self.in_linear.weight.data = torch.eye(proj_in_dim)
else:
self.in_linear = None
if self.pixel_wise_crosspond and self.enabled:
self.crosspond_norm, self.crosspond_attention = construct_pix2pix_attention(self.hidden_states_dim, norm_type=norm_type)
def do_crosspond_attention(self, hidden_states: torch.FloatTensor, other_states: torch.FloatTensor):
hidden_states = self.crosspond_norm(hidden_states)
batch, L, D = hidden_states.shape
assert hidden_states.shape == other_states.shape, f"got {hidden_states.shape} and {other_states.shape}"
# to -> batch * L, 1, D
hidden_states = hidden_states.reshape(batch * L, 1, D)
other_states = other_states.reshape(batch * L, 1, D)
hidden_states_catted = other_states
hidden_states = self.crosspond_attention(
hidden_states,
encoder_hidden_states=hidden_states_catted,
)
return hidden_states.reshape(batch, L, D)
def __call__(
self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None,
ref_dict: dict = None, mode=None, **kwargs
) -> Any:
if not self.enabled:
return self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
assert ref_dict is not None
if (mode or self.mode) == 'extract':
ref_dict[self.name] = hidden_states
hidden_states1 = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs)
if self.pixel_wise_crosspond and self.crosspond_chain_pos == "after":
ref_dict[self.name] = hidden_states1
return hidden_states1
elif (mode or self.mode) == 'inject':
ref_state = ref_dict.pop(self.name)
if self.with_proj_in:
ref_state = self.in_linear(ref_state)
B, L, D = ref_state.shape
if hidden_states.shape[0] == B:
modalities = 1
views = 1
else:
modalities = hidden_states.shape[0] // B // self.views
views = self.views
if self.pixel_wise_crosspond:
if self.crosspond_effect_on == "all":
ref_state = ref_state[:, None].expand(-1, modalities * views, -1, -1).reshape(-1, *ref_state.shape[-2:])
if self.crosspond_chain_pos == "before":
hidden_states = hidden_states + self.do_crosspond_attention(hidden_states, ref_state)
hidden_states1 = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs)
if self.crosspond_chain_pos == "parralle":
hidden_states1 = hidden_states1 + self.do_crosspond_attention(hidden_states, ref_state)
if self.crosspond_chain_pos == "after":
hidden_states1 = hidden_states1 + self.do_crosspond_attention(hidden_states1, ref_state)
return hidden_states1
else:
assert self.crosspond_effect_on == "first"
# hidden_states [B * modalities * views, L, D]
# ref_state [B, L, D]
ref_state = ref_state[:, None].expand(-1, modalities, -1, -1).reshape(-1, ref_state.shape[-2], ref_state.shape[-1]) # [B * modalities, L, D]
def do_paritial_crosspond(hidden_states, ref_state):
first_view_hidden_states = hidden_states.view(-1, views, hidden_states.shape[1], hidden_states.shape[2])[:, 0] # [B * modalities, L, D]
hidden_states2 = self.do_crosspond_attention(first_view_hidden_states, ref_state) # [B * modalities, L, D]
hidden_states2_padded = torch.zeros_like(hidden_states).reshape(-1, views, hidden_states.shape[1], hidden_states.shape[2])
hidden_states2_padded[:, 0] = hidden_states2
hidden_states2_padded = hidden_states2_padded.reshape(-1, hidden_states.shape[1], hidden_states.shape[2])
return hidden_states2_padded
if self.crosspond_chain_pos == "before":
hidden_states = hidden_states + do_paritial_crosspond(hidden_states, ref_state)
hidden_states1 = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs) # [B * modalities * views, L, D]
if self.crosspond_chain_pos == "parralle":
hidden_states1 = hidden_states1 + do_paritial_crosspond(hidden_states, ref_state)
if self.crosspond_chain_pos == "after":
hidden_states1 = hidden_states1 + do_paritial_crosspond(hidden_states1, ref_state)
return hidden_states1
elif self.simple_3d:
B, L, C = encoder_hidden_states.shape
mv = self.views
encoder_hidden_states = encoder_hidden_states.reshape(B // mv, mv, L, C)
ref_state = ref_state[:, None]
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_state], dim=1)
encoder_hidden_states = encoder_hidden_states.reshape(B // mv, 1, (mv+1) * L, C)
encoder_hidden_states = encoder_hidden_states.repeat(1, mv, 1, 1).reshape(-1, (mv+1) * L, C)
return self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs)
else:
ref_state = ref_state[:, None].expand(-1, modalities * views, -1, -1).reshape(-1, ref_state.shape[-2], ref_state.shape[-1])
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_state], dim=1)
return self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs)
else:
raise NotImplementedError("mode or self.mode is required to be 'extract' or 'inject'")
def add_extra_processor(model: torch.nn.Module, enable_filter=lambda x:True, **kwargs):
return_dict = torch.nn.ModuleDict()
proj_in_dim = kwargs.get('proj_in_dim', False)
kwargs.pop('proj_in_dim', None)
def recursive_add_processors(name: str, module: torch.nn.Module):
for sub_name, child in module.named_children():
if "ref_unet" not in (sub_name + name):
recursive_add_processors(f"{name}.{sub_name}", child)
if isinstance(module, Attention):
new_processor = ExtraAttnProc(
chained_proc=module.get_processor(),
enabled=enable_filter(f"{name}.processor"),
name=f"{name}.processor",
proj_in_dim=proj_in_dim if proj_in_dim else module.cross_attention_dim,
target_dim=module.cross_attention_dim,
**kwargs
)
module.set_processor(new_processor)
return_dict[f"{name}.processor".replace(".", "__")] = new_processor
for name, module in model.named_children():
recursive_add_processors(name, module)
return return_dict
def switch_extra_processor(model, enable_filter=lambda x:True):
def recursive_add_processors(name: str, module: torch.nn.Module):
for sub_name, child in module.named_children():
recursive_add_processors(f"{name}.{sub_name}", child)
if isinstance(module, ExtraAttnProc):
module.enabled = enable_filter(name)
for name, module in model.named_children():
recursive_add_processors(name, module)
class multiviewAttnProc(torch.nn.Module):
def __init__(
self,
chained_proc,
enabled=False,
name=None,
hidden_states_dim=None,
chain_pos="parralle", # before or parralle or after
num_modalities=1,
views=4,
base_img_size=64,
) -> None:
super().__init__()
self.enabled = enabled
self.chained_proc = chained_proc
self.name = name
self.hidden_states_dim = hidden_states_dim
self.num_modalities = num_modalities
self.views = views
self.base_img_size = base_img_size
self.chain_pos = chain_pos
self.diff_joint_attn = True
def __call__(
self,
attn: Attention,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
**kwargs
) -> torch.Tensor:
if not self.enabled:
return self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs)
B, L, C = hidden_states.shape
mv = self.views
hidden_states = hidden_states.reshape(B // mv, mv, L, C).reshape(-1, mv * L, C)
hidden_states = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask, **kwargs)
return hidden_states.reshape(B // mv, mv, L, C).reshape(-1, L, C)
def add_multiview_processor(model: torch.nn.Module, enable_filter=lambda x:True, **kwargs):
return_dict = torch.nn.ModuleDict()
def recursive_add_processors(name: str, module: torch.nn.Module):
for sub_name, child in module.named_children():
if "ref_unet" not in (sub_name + name):
recursive_add_processors(f"{name}.{sub_name}", child)
if isinstance(module, Attention):
new_processor = multiviewAttnProc(
chained_proc=module.get_processor(),
enabled=enable_filter(f"{name}.processor"),
name=f"{name}.processor",
hidden_states_dim=module.inner_dim,
**kwargs
)
module.set_processor(new_processor)
return_dict[f"{name}.processor".replace(".", "__")] = new_processor
for name, module in model.named_children():
recursive_add_processors(name, module)
return return_dict
def switch_multiview_processor(model, enable_filter=lambda x:True):
def recursive_add_processors(name: str, module: torch.nn.Module):
for sub_name, child in module.named_children():
recursive_add_processors(f"{name}.{sub_name}", child)
if isinstance(module, Attention):
processor = module.get_processor()
if isinstance(processor, multiviewAttnProc):
processor.enabled = enable_filter(f"{name}.processor")
for name, module in model.named_children():
recursive_add_processors(name, module)
class NNModuleWrapper(torch.nn.Module):
def __init__(self, module):
super().__init__()
self.module = module
def forward(self, *args, **kwargs):
return self.module(*args, **kwargs)
def __getattr__(self, name: str):
try:
return super().__getattr__(name)
except AttributeError:
return getattr(self.module, name)
class AttnProcessorSwitch(torch.nn.Module):
def __init__(
self,
proc_dict: dict,
enabled_proc="default",
name=None,
switch_name="default_switch",
):
super().__init__()
self.proc_dict = torch.nn.ModuleDict({k: (v if isinstance(v, torch.nn.Module) else NNModuleWrapper(v)) for k, v in proc_dict.items()})
self.enabled_proc = enabled_proc
self.name = name
self.switch_name = switch_name
self.choose_module(enabled_proc)
def choose_module(self, enabled_proc):
self.enabled_proc = enabled_proc
assert enabled_proc in self.proc_dict.keys()
def __call__(
self,
*args,
**kwargs
) -> torch.FloatTensor:
used_proc = self.proc_dict[self.enabled_proc]
return used_proc(*args, **kwargs)
def add_switch(model: torch.nn.Module, module_filter=lambda x:True, switch_dict_fn=lambda x: {"default": x}, switch_name="default_switch", enabled_proc="default"):
return_dict = torch.nn.ModuleDict()
def recursive_add_processors(name: str, module: torch.nn.Module):
for sub_name, child in module.named_children():
if "ref_unet" not in (sub_name + name):
recursive_add_processors(f"{name}.{sub_name}", child)
if isinstance(module, Attention):
processor = module.get_processor()
if module_filter(processor):
proc_dict = switch_dict_fn(processor)
new_processor = AttnProcessorSwitch(
proc_dict=proc_dict,
enabled_proc=enabled_proc,
name=f"{name}.processor",
switch_name=switch_name,
)
module.set_processor(new_processor)
return_dict[f"{name}.processor".replace(".", "__")] = new_processor
for name, module in model.named_children():
recursive_add_processors(name, module)
return return_dict
def change_switch(model: torch.nn.Module, switch_name="default_switch", enabled_proc="default"):
def recursive_change_processors(name: str, module: torch.nn.Module):
for sub_name, child in module.named_children():
recursive_change_processors(f"{name}.{sub_name}", child)
if isinstance(module, Attention):
processor = module.get_processor()
if isinstance(processor, AttnProcessorSwitch) and processor.switch_name == switch_name:
processor.choose_module(enabled_proc)
for name, module in model.named_children():
recursive_change_processors(name, module)
########## Hack: Attention fix #############
from diffusers.models.attention import Attention
def forward(
self,
hidden_states: torch.FloatTensor,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
**cross_attention_kwargs,
) -> torch.Tensor:
r"""
The forward method of the `Attention` class.
Args:
hidden_states (`torch.Tensor`):
The hidden states of the query.
encoder_hidden_states (`torch.Tensor`, *optional*):
The hidden states of the encoder.
attention_mask (`torch.Tensor`, *optional*):
The attention mask to use. If `None`, no mask is applied.
**cross_attention_kwargs:
Additional keyword arguments to pass along to the cross attention.
Returns:
`torch.Tensor`: The output of the attention layer.
"""
# The `Attention` class can call different attention processors / attention functions
# here we simply pass along all tensors to the selected processor class
# For standard processors that are defined here, `**cross_attention_kwargs` is empty
return self.processor(
self,
hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
Attention.forward = forward |