Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,091 Bytes
37aeb5b 7ad05d0 37aeb5b b73f7a7 37aeb5b 94285bf 37aeb5b 94285bf 37aeb5b 94285bf 37aeb5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
from typing import List
import torch
import numpy as np
from PIL import Image
from pytorch3d.renderer.cameras import look_at_view_transform, OrthographicCameras, CamerasBase
from pytorch3d.renderer.mesh.rasterizer import Fragments
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
RasterizationSettings,
TexturesVertex,
FoVPerspectiveCameras,
FoVOrthographicCameras,
)
from pytorch3d.renderer import MeshRasterizer
def render_pix2faces_py3d(meshes, cameras, H=512, W=512, blur_radius=0.0, faces_per_pixel=1):
"""
Renders pix2face of visible faces.
:param mesh: Pytorch3d.structures.Meshes
:param cameras: pytorch3d.renderer.Cameras
:param H: target image height
:param W: target image width
:param blur_radius: Float distance in the range [0, 2] used to expand the face
bounding boxes for rasterization. Setting blur radius
results in blurred edges around the shape instead of a
hard boundary. Set to 0 for no blur.
:param faces_per_pixel: (int) Number of faces to keep track of per pixel.
We return the nearest faces_per_pixel faces along the z-axis.
"""
# Define the settings for rasterization and shading
raster_settings = RasterizationSettings(
image_size=(H, W),
blur_radius=blur_radius,
faces_per_pixel=faces_per_pixel
)
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings
)
fragments: Fragments = rasterizer(meshes, cameras=cameras)
return {
"pix_to_face": fragments.pix_to_face[..., 0],
}
import nvdiffrast.torch as dr
def _warmup(glctx, device=None):
device = 'cuda' if device is None else device
#windows workaround for https://github.com/NVlabs/nvdiffrast/issues/59
def tensor(*args, **kwargs):
return torch.tensor(*args, device=device, **kwargs)
pos = tensor([[[-0.8, -0.8, 0, 1], [0.8, -0.8, 0, 1], [-0.8, 0.8, 0, 1]]], dtype=torch.float32)
tri = tensor([[0, 1, 2]], dtype=torch.int32)
dr.rasterize(glctx, pos, tri, resolution=[256, 256])
class Pix2FacesRenderer:
def __init__(self, device="cuda"):
self._glctx = dr.RasterizeCudaContext(device=device)
self.device = device
_warmup(self._glctx, device)
def transform_vertices(self, meshes: Meshes, cameras: CamerasBase):
vertices = cameras.transform_points_ndc(meshes.verts_padded())
perspective_correct = cameras.is_perspective()
znear = cameras.get_znear()
if isinstance(znear, torch.Tensor):
znear = znear.min().item()
z_clip = None if not perspective_correct or znear is None else znear / 2
if z_clip:
vertices = vertices[vertices[..., 2] >= cameras.get_znear()][None] # clip
vertices = vertices * torch.tensor([-1, -1, 1]).to(vertices)
vertices = torch.cat([vertices, torch.ones_like(vertices[..., :1])], dim=-1).to(torch.float32)
return vertices
def render_pix2faces_nvdiff(self, meshes: Meshes, cameras: CamerasBase, H=512, W=512):
meshes = meshes.to(self.device)
cameras = cameras.to(self.device)
vertices = self.transform_vertices(meshes, cameras)
faces = meshes.faces_packed().to(torch.int32)
rast_out,_ = dr.rasterize(self._glctx, vertices, faces, resolution=(H, W), grad_db=False) #C,H,W,4
pix_to_face = rast_out[..., -1].to(torch.int32) - 1
return pix_to_face
pix2faces_renderer = None
def get_visible_faces(meshes: Meshes, cameras: CamerasBase, resolution=1024):
# global pix2faces_renderer
# if pix2faces_renderer is None:
# pix2faces_renderer = Pix2FacesRenderer()
pix_to_face = render_pix2faces_py3d(meshes, cameras, H=resolution, W=resolution)['pix_to_face']
# pix_to_face = pix2faces_renderer.render_pix2faces_nvdiff(meshes, cameras, H=resolution, W=resolution)
unique_faces = torch.unique(pix_to_face.flatten())
unique_faces = unique_faces[unique_faces != -1]
return unique_faces
def project_color(meshes: Meshes, cameras: CamerasBase, pil_image: Image.Image, use_alpha=True, eps=0.05, resolution=1024, device="cuda") -> dict:
"""
Projects color from a given image onto a 3D mesh.
Args:
meshes (pytorch3d.structures.Meshes): The 3D mesh object.
cameras (pytorch3d.renderer.cameras.CamerasBase): The camera object.
pil_image (PIL.Image.Image): The input image.
use_alpha (bool, optional): Whether to use the alpha channel of the image. Defaults to True.
eps (float, optional): The threshold for selecting visible faces. Defaults to 0.05.
resolution (int, optional): The resolution of the projection. Defaults to 1024.
device (str, optional): The device to use for computation. Defaults to "cuda".
debug (bool, optional): Whether to save debug images. Defaults to False.
Returns:
dict: A dictionary containing the following keys:
- "new_texture" (TexturesVertex): The updated texture with interpolated colors.
- "valid_verts" (Tensor of [M,3]): The indices of the vertices being projected.
- "valid_colors" (Tensor of [M,3]): The interpolated colors for the valid vertices.
"""
meshes = meshes.to(device)
cameras = cameras.to(device)
image = torch.from_numpy(np.array(pil_image.convert("RGBA")) / 255.).permute((2, 0, 1)).float().to(device) # in CHW format of [0, 1.]
unique_faces = get_visible_faces(meshes, cameras, resolution=resolution)
# visible faces
faces_normals = meshes.faces_normals_packed()[unique_faces]
faces_normals = faces_normals / faces_normals.norm(dim=1, keepdim=True)
world_points = cameras.unproject_points(torch.tensor([[[0., 0., 0.1], [0., 0., 0.2]]]).to(device))[0]
view_direction = world_points[1] - world_points[0]
view_direction = view_direction / view_direction.norm(dim=0, keepdim=True)
# find invalid faces
cos_angles = (faces_normals * view_direction).sum(dim=1)
assert cos_angles.mean() < 0, f"The view direction is not correct. cos_angles.mean()={cos_angles.mean()}"
selected_faces = unique_faces[cos_angles < -eps]
# find verts
faces = meshes.faces_packed()[selected_faces] # [N, 3]
verts = torch.unique(faces.flatten()) # [N, 1]
verts_coordinates = meshes.verts_packed()[verts] # [N, 3]
# compute color
pt_tensor = cameras.transform_points(verts_coordinates)[..., :2] # NDC space points
valid = ~((pt_tensor.isnan()|(pt_tensor<-1)|(1<pt_tensor)).any(dim=1)) # checked, correct
valid_pt = pt_tensor[valid, :]
valid_idx = verts[valid]
valid_color = torch.nn.functional.grid_sample(image[None].flip((-1, -2)), valid_pt[None, :, None, :], align_corners=False, padding_mode="reflection", mode="bilinear")[0, :, :, 0].T.clamp(0, 1) # [N, 4], note that bicubic may give invalid value
alpha, valid_color = valid_color[:, 3:], valid_color[:, :3]
if not use_alpha:
alpha = torch.ones_like(alpha)
# modify color
old_colors = meshes.textures.verts_features_packed()
old_colors[valid_idx] = valid_color * alpha + old_colors[valid_idx] * (1 - alpha)
new_texture = TexturesVertex(verts_features=[old_colors])
valid_verts_normals = meshes.verts_normals_packed()[valid_idx]
valid_verts_normals = valid_verts_normals / valid_verts_normals.norm(dim=1, keepdim=True).clamp_min(0.001)
cos_angles = (valid_verts_normals * view_direction).sum(dim=1)
return {
"new_texture": new_texture,
"valid_verts": valid_idx,
"valid_colors": valid_color,
"valid_alpha": alpha,
"cos_angles": cos_angles,
}
def complete_unseen_vertex_color(meshes: Meshes, valid_index: torch.Tensor) -> dict:
"""
meshes: the mesh with vertex color to be completed.
valid_index: the index of the valid vertices, where valid means colors are fixed. [V, 1]
"""
valid_index = valid_index.to(meshes.device)
colors = meshes.textures.verts_features_packed() # [V, 3]
V = colors.shape[0]
invalid_index = torch.ones_like(colors[:, 0]).bool() # [V]
invalid_index[valid_index] = False
invalid_index = torch.arange(V).to(meshes.device)[invalid_index]
L = meshes.laplacian_packed()
E = torch.sparse_coo_tensor(torch.tensor([list(range(V))] * 2), torch.ones((V,)), size=(V, V)).to(meshes.device)
L = L + E
# E = torch.eye(V, layout=torch.sparse_coo, device=meshes.device)
# L = L + E
colored_count = torch.ones_like(colors[:, 0]) # [V]
colored_count[invalid_index] = 0
L_invalid = torch.index_select(L, 0, invalid_index) # sparse [IV, V]
total_colored = colored_count.sum()
coloring_round = 0
stage = "uncolored"
from tqdm import tqdm
pbar = tqdm(miniters=100)
while stage == "uncolored" or coloring_round > 0:
new_color = torch.matmul(L_invalid, colors * colored_count[:, None]) # [IV, 3]
new_count = torch.matmul(L_invalid, colored_count)[:, None] # [IV, 1]
colors[invalid_index] = torch.where(new_count > 0, new_color / new_count, colors[invalid_index])
colored_count[invalid_index] = (new_count[:, 0] > 0).float()
new_total_colored = colored_count.sum()
if new_total_colored > total_colored:
total_colored = new_total_colored
coloring_round += 1
else:
stage = "colored"
coloring_round -= 1
pbar.update(1)
if coloring_round > 10000:
print("coloring_round > 10000, break")
break
assert not torch.isnan(colors).any()
meshes.textures = TexturesVertex(verts_features=[colors])
return meshes
def multiview_color_projection(meshes: Meshes, image_list: List[Image.Image], cameras_list: List[CamerasBase]=None, camera_focal: float = 2 / 1.35, weights=None, eps=0.05, resolution=1024, device="cuda", reweight_with_cosangle="square", use_alpha=True, confidence_threshold=0.1, complete_unseen=False, below_confidence_strategy="smooth") -> Meshes:
"""
Projects color from a given image onto a 3D mesh.
Args:
meshes (pytorch3d.structures.Meshes): The 3D mesh object, only one mesh.
image_list (PIL.Image.Image): List of images.
cameras_list (list): List of cameras.
camera_focal (float, optional): The focal length of the camera, if cameras_list is not passed. Defaults to 2 / 1.35.
weights (list, optional): List of weights for each image, for ['front', 'front_right', 'right', 'back', 'left', 'front_left']. Defaults to None.
eps (float, optional): The threshold for selecting visible faces. Defaults to 0.05.
resolution (int, optional): The resolution of the projection. Defaults to 1024.
device (str, optional): The device to use for computation. Defaults to "cuda".
reweight_with_cosangle (str, optional): Whether to reweight the color with the angle between the view direction and the vertex normal. Defaults to None.
use_alpha (bool, optional): Whether to use the alpha channel of the image. Defaults to True.
confidence_threshold (float, optional): The threshold for the confidence of the projected color, if final projection weight is less than this, we will use the original color. Defaults to 0.1.
complete_unseen (bool, optional): Whether to complete the unseen vertex color using laplacian. Defaults to False.
Returns:
Meshes: the colored mesh
"""
# 1. preprocess inputs
if image_list is None:
raise ValueError("image_list is None")
if cameras_list is None:
if len(image_list) == 8:
cameras_list = get_8view_cameras(device, focal=camera_focal)
elif len(image_list) == 6:
cameras_list = get_6view_cameras(device, focal=camera_focal)
elif len(image_list) == 4:
cameras_list = get_4view_cameras(device, focal=camera_focal)
elif len(image_list) == 2:
cameras_list = get_2view_cameras(device, focal=camera_focal)
else:
raise ValueError("cameras_list is None, and can not be guessed from image_list")
if weights is None:
if len(image_list) == 8:
weights = [2.0, 0.05, 0.2, 0.02, 1.0, 0.02, 0.2, 0.05]
elif len(image_list) == 6:
weights = [2.0, 0.05, 0.2, 1.0, 0.2, 0.05]
elif len(image_list) == 4:
weights = [2.0, 0.2, 1.0, 0.2]
elif len(image_list) == 2:
weights = [1.0, 1.0]
else:
raise ValueError("weights is None, and can not be guessed from image_list")
# 2. run projection
meshes = meshes.clone().to(device)
if weights is None:
weights = [1. for _ in range(len(cameras_list))]
assert len(cameras_list) == len(image_list) == len(weights)
original_color = meshes.textures.verts_features_packed()
assert not torch.isnan(original_color).any()
texture_counts = torch.zeros_like(original_color[..., :1])
texture_values = torch.zeros_like(original_color)
max_texture_counts = torch.zeros_like(original_color[..., :1])
max_texture_values = torch.zeros_like(original_color)
for camera, image, weight in zip(cameras_list, image_list, weights):
ret = project_color(meshes, camera, image, eps=eps, resolution=resolution, device=device, use_alpha=use_alpha)
if reweight_with_cosangle == "linear":
weight = (ret['cos_angles'].abs() * weight)[:, None]
elif reweight_with_cosangle == "square":
weight = (ret['cos_angles'].abs() ** 2 * weight)[:, None]
if use_alpha:
weight = weight * ret['valid_alpha']
assert weight.min() > -0.0001
texture_counts[ret['valid_verts']] += weight
texture_values[ret['valid_verts']] += ret['valid_colors'] * weight
max_texture_values[ret['valid_verts']] = torch.where(weight > max_texture_counts[ret['valid_verts']], ret['valid_colors'], max_texture_values[ret['valid_verts']])
max_texture_counts[ret['valid_verts']] = torch.max(max_texture_counts[ret['valid_verts']], weight)
# Method2
texture_values = torch.where(texture_counts > confidence_threshold, texture_values / texture_counts, texture_values)
if below_confidence_strategy == "smooth":
texture_values = torch.where(texture_counts <= confidence_threshold, (original_color * (confidence_threshold - texture_counts) + texture_values) / confidence_threshold, texture_values)
elif below_confidence_strategy == "original":
texture_values = torch.where(texture_counts <= confidence_threshold, original_color, texture_values)
else:
raise ValueError(f"below_confidence_strategy={below_confidence_strategy} is not supported")
assert not torch.isnan(texture_values).any()
meshes.textures = TexturesVertex(verts_features=[texture_values])
if complete_unseen:
meshes = complete_unseen_vertex_color(meshes, torch.arange(texture_values.shape[0]).to(device)[texture_counts[:, 0] >= confidence_threshold])
ret_mesh = meshes.detach()
del meshes
return ret_mesh
def get_camera(R, T, fov_in_degrees=60, focal_length=1 / (2**0.5), cam_type='fov'):
if cam_type == 'fov':
camera = FoVPerspectiveCameras(device=R.device, R=R, T=T, fov=fov_in_degrees, degrees=True)
else:
focal_length = 1 / focal_length
camera = FoVOrthographicCameras(device=R.device, R=R, T=T, min_x=-focal_length, max_x=focal_length, min_y=-focal_length, max_y=focal_length)
return camera
def get_cameras_list(azim_list, device, focal=2/1.35, dist=1.1):
ret = []
for azim in azim_list:
R, T = look_at_view_transform(dist, 0, azim)
cameras: OrthographicCameras = get_camera(R, T, focal_length=focal, cam_type='orthogonal').to(device)
ret.append(cameras)
return ret
def get_8view_cameras(device, focal=2/1.35):
return get_cameras_list(azim_list = [180, 225, 270, 315, 0, 45, 90, 135], device=device, focal=focal)
def get_6view_cameras(device, focal=2/1.35):
return get_cameras_list(azim_list = [180, 225, 270, 0, 90, 135], device=device, focal=focal)
def get_4view_cameras(device, focal=2/1.35):
return get_cameras_list(azim_list = [180, 270, 0, 90], device=device, focal=focal)
def get_2view_cameras(device, focal=2/1.35):
return get_cameras_list(azim_list = [180, 0], device=device, focal=focal)
def get_multiple_view_cameras(device, focal=2/1.35, offset=180, num_views=8, dist=1.1):
return get_cameras_list(azim_list = (np.linspace(0, 360, num_views+1)[:-1] + offset) % 360, device=device, focal=focal, dist=dist)
def align_with_alpha_bbox(source_img, target_img, final_size=1024):
# align source_img with target_img using alpha channel
# source_img and target_img are PIL.Image.Image
source_img = source_img.convert("RGBA")
target_img = target_img.convert("RGBA").resize((final_size, final_size))
source_np = np.array(source_img)
target_np = np.array(target_img)
source_alpha = source_np[:, :, 3]
target_alpha = target_np[:, :, 3]
bbox_source_min, bbox_source_max = np.argwhere(source_alpha > 0).min(axis=0), np.argwhere(source_alpha > 0).max(axis=0)
bbox_target_min, bbox_target_max = np.argwhere(target_alpha > 0).min(axis=0), np.argwhere(target_alpha > 0).max(axis=0)
source_content = source_np[bbox_source_min[0]:bbox_source_max[0]+1, bbox_source_min[1]:bbox_source_max[1]+1, :]
# resize source_content to fit in the position of target_content
source_content = Image.fromarray(source_content).resize((bbox_target_max[1]-bbox_target_min[1]+1, bbox_target_max[0]-bbox_target_min[0]+1), resample=Image.BICUBIC)
target_np[bbox_target_min[0]:bbox_target_max[0]+1, bbox_target_min[1]:bbox_target_max[1]+1, :] = np.array(source_content)
return Image.fromarray(target_np)
def load_image_list_from_mvdiffusion(mvdiffusion_path, front_from_pil_or_path=None):
import os
image_list = []
for dir in ['front', 'front_right', 'right', 'back', 'left', 'front_left']:
image_path = os.path.join(mvdiffusion_path, f"rgb_000_{dir}.png")
pil = Image.open(image_path)
if dir == 'front':
if front_from_pil_or_path is not None:
if isinstance(front_from_pil_or_path, str):
replace_pil = Image.open(front_from_pil_or_path)
else:
replace_pil = front_from_pil_or_path
# align replace_pil with pil using bounding box in alpha channel
pil = align_with_alpha_bbox(replace_pil, pil, final_size=1024)
image_list.append(pil)
return image_list
def load_image_list_from_img_grid(img_grid_path, resolution = 1024):
img_list = []
grid = Image.open(img_grid_path)
w, h = grid.size
for row in range(0, h, resolution):
for col in range(0, w, resolution):
img_list.append(grid.crop((col, row, col + resolution, row + resolution)))
return img_list |