Unique3D / scripts /multiview_inference.py
Wuvin's picture
Better ZeroGPU utilization
69ac8ac
raw
history blame
9.18 kB
import os
from PIL import Image
from scripts.mesh_init import build_mesh, calc_w_over_h, fix_border_with_pymeshlab_fast
from scripts.project_mesh import multiview_color_projection
from scripts.refine_lr_to_sr import run_sr_fast
from scripts.utils import simple_clean_mesh
from gradio_app.utils import simple_remove, split_image
from gradio_app.custom_models.normal_prediction import predict_normals
from mesh_reconstruction.recon import reconstruct_stage1
from mesh_reconstruction.refine import run_mesh_refine
from scripts.project_mesh import get_cameras_list
from scripts.utils import from_py3d_mesh, to_pyml_mesh
from pytorch3d.structures import Meshes, join_meshes_as_scene
import numpy as np
def fast_geo(front_normal: Image.Image, back_normal: Image.Image, side_normal: Image.Image, clamp=0., init_type="std"):
if front_normal.mode == "RGB":
front_normal = simple_remove(front_normal, run_sr=False)
front_normal = front_normal.resize((192, 192))
if back_normal.mode == "RGB":
back_normal = simple_remove(back_normal, run_sr=False)
back_normal = back_normal.resize((192, 192))
if side_normal.mode == "RGB":
side_normal = simple_remove(side_normal, run_sr=False)
side_normal = side_normal.resize((192, 192))
# build mesh with front back projection # ~3s
side_w_over_h = calc_w_over_h(side_normal)
mesh_front = build_mesh(front_normal, front_normal, clamp_min=clamp, scale=side_w_over_h, init_type=init_type)
mesh_back = build_mesh(back_normal, back_normal, is_back=True, clamp_min=clamp, scale=side_w_over_h, init_type=init_type)
meshes = join_meshes_as_scene([mesh_front, mesh_back])
meshes = fix_border_with_pymeshlab_fast(meshes, poissson_depth=6, simplification=2000)
return meshes
def refine_rgb(rgb_pils, front_pil):
from scripts.refine_lr_to_sr import refine_lr_with_sd
from scripts.utils import NEG_PROMPT
from gradio_app.utils import make_image_grid
from gradio_app.all_models import model_zoo
from gradio_app.utils import rgba_to_rgb
rgb_pil = make_image_grid(rgb_pils, rows=2)
prompt = "4views, multiview"
neg_prompt = NEG_PROMPT
control_image = rgb_pil.resize((1024, 1024))
refined_rgb = refine_lr_with_sd([rgb_pil], [rgba_to_rgb(front_pil)], [control_image], prompt_list=[prompt], neg_prompt_list=[neg_prompt], pipe=model_zoo.pipe_disney_controlnet_tile_ipadapter_i2i, strength=0.2, output_size=(1024, 1024))[0]
refined_rgbs = split_image(refined_rgb, rows=2)
return refined_rgbs
def erode_alpha(img_list):
out_img_list = []
for idx, img in enumerate(img_list):
arr = np.array(img)
alpha = (arr[:, :, 3] > 127).astype(np.uint8)
# erode 1px
import cv2
alpha = cv2.erode(alpha, np.ones((3, 3), np.uint8), iterations=1)
alpha = (alpha * 255).astype(np.uint8)
img = Image.fromarray(np.concatenate([arr[:, :, :3], alpha[:, :, None]], axis=-1))
out_img_list.append(img)
return out_img_list
def geo_reconstruct(rgb_pils, normal_pils, front_pil, do_refine=False, predict_normal=True, expansion_weight=0.1, init_type="std"):
if front_pil.size[0] <= 512:
front_pil = run_sr_fast([front_pil])[0]
if do_refine:
refined_rgbs = refine_rgb(rgb_pils, front_pil) # 6s
else:
refined_rgbs = [rgb.resize((512, 512), resample=Image.LANCZOS) for rgb in rgb_pils]
img_list = [front_pil] + run_sr_fast(refined_rgbs[1:])
if predict_normal:
rm_normals = predict_normals([img.resize((512, 512), resample=Image.LANCZOS) for img in img_list], guidance_scale=1.5)
else:
rm_normals = simple_remove([img.resize((512, 512), resample=Image.LANCZOS) for img in normal_pils])
# transfer the alpha channel of rm_normals to img_list
for idx, img in enumerate(rm_normals):
if idx == 0 and img_list[0].mode == "RGBA":
temp = img_list[0].resize((2048, 2048))
rm_normals[0] = Image.fromarray(np.concatenate([np.array(rm_normals[0])[:, :, :3], np.array(temp)[:, :, 3:4]], axis=-1))
continue
img_list[idx] = Image.fromarray(np.concatenate([np.array(img_list[idx]), np.array(img)[:, :, 3:4]], axis=-1))
assert img_list[0].mode == "RGBA"
assert np.mean(np.array(img_list[0])[..., 3]) < 250
img_list = [img_list[0]] + erode_alpha(img_list[1:])
normal_stg1 = [img.resize((512, 512)) for img in rm_normals]
if init_type in ["std", "thin"]:
meshes = fast_geo(normal_stg1[0], normal_stg1[2], normal_stg1[1], init_type=init_type)
_ = multiview_color_projection(meshes, rgb_pils, resolution=512, device="cuda", complete_unseen=False, confidence_threshold=0.1) # just check for validation, may throw error
vertices, faces, _ = from_py3d_mesh(meshes)
vertices, faces = reconstruct_stage1(normal_stg1, steps=200, vertices=vertices, faces=faces, start_edge_len=0.1, end_edge_len=0.02, gain=0.05, return_mesh=False, loss_expansion_weight=expansion_weight)
elif init_type in ["ball"]:
vertices, faces = reconstruct_stage1(normal_stg1, steps=200, end_edge_len=0.01, return_mesh=False, loss_expansion_weight=expansion_weight)
normal_stg2 = [img.resize((1024, 1024)) for img in rm_normals] # reduce computation on huggingface demo, use 1024 instead of 2048
vertices, faces = run_mesh_refine(vertices, faces, normal_stg2, steps=100, start_edge_len=0.02, end_edge_len=0.005, decay=0.99, update_normal_interval=20, update_warmup=5, return_mesh=False, process_inputs=False, process_outputs=False)
meshes = simple_clean_mesh(to_pyml_mesh(vertices, faces), apply_smooth=True, stepsmoothnum=1, apply_sub_divide=True, sub_divide_threshold=0.25).to("cuda")
new_meshes = multiview_color_projection(meshes, img_list, resolution=1024, device="cuda", complete_unseen=True, confidence_threshold=0.2, cameras_list = get_cameras_list([0, 90, 180, 270], "cuda", focal=1))
return new_meshes
########################
import spaces
@spaces.GPU
def geo_reconstruct_part1(rgb_pils, normal_pils, front_pil, do_refine=False, predict_normal=True, expansion_weight=0.1, init_type="std"):
if front_pil.size[0] <= 512:
front_pil = run_sr_fast([front_pil])[0]
if do_refine:
refined_rgbs = refine_rgb(rgb_pils, front_pil) # 6s
else:
refined_rgbs = [rgb.resize((512, 512), resample=Image.LANCZOS) for rgb in rgb_pils]
img_list = [front_pil] + run_sr_fast(refined_rgbs[1:])
if predict_normal:
rm_normals = predict_normals([img.resize((512, 512), resample=Image.LANCZOS) for img in img_list], guidance_scale=1.5)
else:
rm_normals = simple_remove([img.resize((512, 512), resample=Image.LANCZOS) for img in normal_pils])
# transfer the alpha channel of rm_normals to img_list
for idx, img in enumerate(rm_normals):
if idx == 0 and img_list[0].mode == "RGBA":
temp = img_list[0].resize((2048, 2048))
rm_normals[0] = Image.fromarray(np.concatenate([np.array(rm_normals[0])[:, :, :3], np.array(temp)[:, :, 3:4]], axis=-1))
continue
img_list[idx] = Image.fromarray(np.concatenate([np.array(img_list[idx]), np.array(img)[:, :, 3:4]], axis=-1))
assert img_list[0].mode == "RGBA"
assert np.mean(np.array(img_list[0])[..., 3]) < 250
img_list = [img_list[0]] + erode_alpha(img_list[1:])
normal_stg1 = [img.resize((512, 512)) for img in rm_normals]
if init_type in ["std", "thin"]:
meshes = fast_geo(normal_stg1[0], normal_stg1[2], normal_stg1[1], init_type=init_type)
_ = multiview_color_projection(meshes, rgb_pils, resolution=512, device="cuda", complete_unseen=False, confidence_threshold=0.1) # just check for validation, may throw error
vertices, faces, _ = from_py3d_mesh(meshes)
vertices, faces = reconstruct_stage1(normal_stg1, steps=200, vertices=vertices, faces=faces, start_edge_len=0.1, end_edge_len=0.02, gain=0.05, return_mesh=False, loss_expansion_weight=expansion_weight)
elif init_type in ["ball"]:
vertices, faces = reconstruct_stage1(normal_stg1, steps=200, end_edge_len=0.01, return_mesh=False, loss_expansion_weight=expansion_weight)
normal_stg2 = [img.resize((1024, 1024)) for img in rm_normals] # reduce computation on huggingface demo, use 1024 instead of 2048
vertices, faces = run_mesh_refine(vertices, faces, normal_stg2, steps=100, start_edge_len=0.02, end_edge_len=0.005, decay=0.99, update_normal_interval=20, update_warmup=5, return_mesh=False, process_inputs=False, process_outputs=False)
return vertices, faces, img_list
# no GPU
def geo_reconstruct_part2(vertices, faces):
meshes = simple_clean_mesh(to_pyml_mesh(vertices, faces), apply_smooth=True, stepsmoothnum=1, apply_sub_divide=True, sub_divide_threshold=0.25)
return meshes
@spaces.GPU
def geo_reconstruct_part3(meshes, img_list):
meshes = meshes.to("cuda")
new_meshes = multiview_color_projection(meshes, img_list, resolution=1024, device="cuda", complete_unseen=True, confidence_threshold=0.2, cameras_list = get_cameras_list([0, 90, 180, 270], "cuda", focal=1))
return new_meshes