Unique3D / scripts /project_mesh.py
Wuvin's picture
use pytorch3d to render, instead of nvdiffrast
94285bf
raw
history blame
19.1 kB
from typing import List
import torch
import numpy as np
from PIL import Image
from pytorch3d.renderer.cameras import look_at_view_transform, OrthographicCameras, CamerasBase
from pytorch3d.renderer.mesh.rasterizer import Fragments
from pytorch3d.structures import Meshes
from pytorch3d.renderer import (
RasterizationSettings,
TexturesVertex,
FoVPerspectiveCameras,
FoVOrthographicCameras,
)
from pytorch3d.renderer import MeshRasterizer
def render_pix2faces_py3d(meshes, cameras, H=512, W=512, blur_radius=0.0, faces_per_pixel=1):
"""
Renders pix2face of visible faces.
:param mesh: Pytorch3d.structures.Meshes
:param cameras: pytorch3d.renderer.Cameras
:param H: target image height
:param W: target image width
:param blur_radius: Float distance in the range [0, 2] used to expand the face
bounding boxes for rasterization. Setting blur radius
results in blurred edges around the shape instead of a
hard boundary. Set to 0 for no blur.
:param faces_per_pixel: (int) Number of faces to keep track of per pixel.
We return the nearest faces_per_pixel faces along the z-axis.
"""
# Define the settings for rasterization and shading
raster_settings = RasterizationSettings(
image_size=(H, W),
blur_radius=blur_radius,
faces_per_pixel=faces_per_pixel
)
rasterizer=MeshRasterizer(
cameras=cameras,
raster_settings=raster_settings
)
fragments: Fragments = rasterizer(meshes, cameras=cameras)
return {
"pix_to_face": fragments.pix_to_face[..., 0],
}
import nvdiffrast.torch as dr
def _warmup(glctx, device=None):
device = 'cuda' if device is None else device
#windows workaround for https://github.com/NVlabs/nvdiffrast/issues/59
def tensor(*args, **kwargs):
return torch.tensor(*args, device=device, **kwargs)
pos = tensor([[[-0.8, -0.8, 0, 1], [0.8, -0.8, 0, 1], [-0.8, 0.8, 0, 1]]], dtype=torch.float32)
tri = tensor([[0, 1, 2]], dtype=torch.int32)
dr.rasterize(glctx, pos, tri, resolution=[256, 256])
class Pix2FacesRenderer:
def __init__(self, device="cuda"):
self._glctx = dr.RasterizeGLContext(output_db=False, device=device)
self.device = device
_warmup(self._glctx, device)
def transform_vertices(self, meshes: Meshes, cameras: CamerasBase):
vertices = cameras.transform_points_ndc(meshes.verts_padded())
perspective_correct = cameras.is_perspective()
znear = cameras.get_znear()
if isinstance(znear, torch.Tensor):
znear = znear.min().item()
z_clip = None if not perspective_correct or znear is None else znear / 2
if z_clip:
vertices = vertices[vertices[..., 2] >= cameras.get_znear()][None] # clip
vertices = vertices * torch.tensor([-1, -1, 1]).to(vertices)
vertices = torch.cat([vertices, torch.ones_like(vertices[..., :1])], dim=-1).to(torch.float32)
return vertices
def render_pix2faces_nvdiff(self, meshes: Meshes, cameras: CamerasBase, H=512, W=512):
meshes = meshes.to(self.device)
cameras = cameras.to(self.device)
vertices = self.transform_vertices(meshes, cameras)
faces = meshes.faces_packed().to(torch.int32)
rast_out,_ = dr.rasterize(self._glctx, vertices, faces, resolution=(H, W), grad_db=False) #C,H,W,4
pix_to_face = rast_out[..., -1].to(torch.int32) - 1
return pix_to_face
pix2faces_renderer = None
def get_visible_faces(meshes: Meshes, cameras: CamerasBase, resolution=1024):
# global pix2faces_renderer
# if pix2faces_renderer is None:
# pix2faces_renderer = Pix2FacesRenderer()
pix_to_face = render_pix2faces_py3d(meshes, cameras, H=resolution, W=resolution)['pix_to_face']
# pix_to_face = pix2faces_renderer.render_pix2faces_nvdiff(meshes, cameras, H=resolution, W=resolution)
unique_faces = torch.unique(pix_to_face.flatten())
unique_faces = unique_faces[unique_faces != -1]
return unique_faces
def project_color(meshes: Meshes, cameras: CamerasBase, pil_image: Image.Image, use_alpha=True, eps=0.05, resolution=1024, device="cuda") -> dict:
"""
Projects color from a given image onto a 3D mesh.
Args:
meshes (pytorch3d.structures.Meshes): The 3D mesh object.
cameras (pytorch3d.renderer.cameras.CamerasBase): The camera object.
pil_image (PIL.Image.Image): The input image.
use_alpha (bool, optional): Whether to use the alpha channel of the image. Defaults to True.
eps (float, optional): The threshold for selecting visible faces. Defaults to 0.05.
resolution (int, optional): The resolution of the projection. Defaults to 1024.
device (str, optional): The device to use for computation. Defaults to "cuda".
debug (bool, optional): Whether to save debug images. Defaults to False.
Returns:
dict: A dictionary containing the following keys:
- "new_texture" (TexturesVertex): The updated texture with interpolated colors.
- "valid_verts" (Tensor of [M,3]): The indices of the vertices being projected.
- "valid_colors" (Tensor of [M,3]): The interpolated colors for the valid vertices.
"""
meshes = meshes.to(device)
cameras = cameras.to(device)
image = torch.from_numpy(np.array(pil_image.convert("RGBA")) / 255.).permute((2, 0, 1)).float().to(device) # in CHW format of [0, 1.]
unique_faces = get_visible_faces(meshes, cameras, resolution=resolution)
# visible faces
faces_normals = meshes.faces_normals_packed()[unique_faces]
faces_normals = faces_normals / faces_normals.norm(dim=1, keepdim=True)
world_points = cameras.unproject_points(torch.tensor([[[0., 0., 0.1], [0., 0., 0.2]]]).to(device))[0]
view_direction = world_points[1] - world_points[0]
view_direction = view_direction / view_direction.norm(dim=0, keepdim=True)
# find invalid faces
cos_angles = (faces_normals * view_direction).sum(dim=1)
assert cos_angles.mean() < 0, f"The view direction is not correct. cos_angles.mean()={cos_angles.mean()}"
selected_faces = unique_faces[cos_angles < -eps]
# find verts
faces = meshes.faces_packed()[selected_faces] # [N, 3]
verts = torch.unique(faces.flatten()) # [N, 1]
verts_coordinates = meshes.verts_packed()[verts] # [N, 3]
# compute color
pt_tensor = cameras.transform_points(verts_coordinates)[..., :2] # NDC space points
valid = ~((pt_tensor.isnan()|(pt_tensor<-1)|(1<pt_tensor)).any(dim=1)) # checked, correct
valid_pt = pt_tensor[valid, :]
valid_idx = verts[valid]
valid_color = torch.nn.functional.grid_sample(image[None].flip((-1, -2)), valid_pt[None, :, None, :], align_corners=False, padding_mode="reflection", mode="bilinear")[0, :, :, 0].T.clamp(0, 1) # [N, 4], note that bicubic may give invalid value
alpha, valid_color = valid_color[:, 3:], valid_color[:, :3]
if not use_alpha:
alpha = torch.ones_like(alpha)
# modify color
old_colors = meshes.textures.verts_features_packed()
old_colors[valid_idx] = valid_color * alpha + old_colors[valid_idx] * (1 - alpha)
new_texture = TexturesVertex(verts_features=[old_colors])
valid_verts_normals = meshes.verts_normals_packed()[valid_idx]
valid_verts_normals = valid_verts_normals / valid_verts_normals.norm(dim=1, keepdim=True).clamp_min(0.001)
cos_angles = (valid_verts_normals * view_direction).sum(dim=1)
return {
"new_texture": new_texture,
"valid_verts": valid_idx,
"valid_colors": valid_color,
"valid_alpha": alpha,
"cos_angles": cos_angles,
}
def complete_unseen_vertex_color(meshes: Meshes, valid_index: torch.Tensor) -> dict:
"""
meshes: the mesh with vertex color to be completed.
valid_index: the index of the valid vertices, where valid means colors are fixed. [V, 1]
"""
valid_index = valid_index.to(meshes.device)
colors = meshes.textures.verts_features_packed() # [V, 3]
V = colors.shape[0]
invalid_index = torch.ones_like(colors[:, 0]).bool() # [V]
invalid_index[valid_index] = False
invalid_index = torch.arange(V).to(meshes.device)[invalid_index]
L = meshes.laplacian_packed()
E = torch.sparse_coo_tensor(torch.tensor([list(range(V))] * 2), torch.ones((V,)), size=(V, V)).to(meshes.device)
L = L + E
# E = torch.eye(V, layout=torch.sparse_coo, device=meshes.device)
# L = L + E
colored_count = torch.ones_like(colors[:, 0]) # [V]
colored_count[invalid_index] = 0
L_invalid = torch.index_select(L, 0, invalid_index) # sparse [IV, V]
total_colored = colored_count.sum()
coloring_round = 0
stage = "uncolored"
from tqdm import tqdm
pbar = tqdm(miniters=100)
while stage == "uncolored" or coloring_round > 0:
new_color = torch.matmul(L_invalid, colors * colored_count[:, None]) # [IV, 3]
new_count = torch.matmul(L_invalid, colored_count)[:, None] # [IV, 1]
colors[invalid_index] = torch.where(new_count > 0, new_color / new_count, colors[invalid_index])
colored_count[invalid_index] = (new_count[:, 0] > 0).float()
new_total_colored = colored_count.sum()
if new_total_colored > total_colored:
total_colored = new_total_colored
coloring_round += 1
else:
stage = "colored"
coloring_round -= 1
pbar.update(1)
if coloring_round > 10000:
print("coloring_round > 10000, break")
break
assert not torch.isnan(colors).any()
meshes.textures = TexturesVertex(verts_features=[colors])
return meshes
def multiview_color_projection(meshes: Meshes, image_list: List[Image.Image], cameras_list: List[CamerasBase]=None, camera_focal: float = 2 / 1.35, weights=None, eps=0.05, resolution=1024, device="cuda", reweight_with_cosangle="square", use_alpha=True, confidence_threshold=0.1, complete_unseen=False, below_confidence_strategy="smooth") -> Meshes:
"""
Projects color from a given image onto a 3D mesh.
Args:
meshes (pytorch3d.structures.Meshes): The 3D mesh object, only one mesh.
image_list (PIL.Image.Image): List of images.
cameras_list (list): List of cameras.
camera_focal (float, optional): The focal length of the camera, if cameras_list is not passed. Defaults to 2 / 1.35.
weights (list, optional): List of weights for each image, for ['front', 'front_right', 'right', 'back', 'left', 'front_left']. Defaults to None.
eps (float, optional): The threshold for selecting visible faces. Defaults to 0.05.
resolution (int, optional): The resolution of the projection. Defaults to 1024.
device (str, optional): The device to use for computation. Defaults to "cuda".
reweight_with_cosangle (str, optional): Whether to reweight the color with the angle between the view direction and the vertex normal. Defaults to None.
use_alpha (bool, optional): Whether to use the alpha channel of the image. Defaults to True.
confidence_threshold (float, optional): The threshold for the confidence of the projected color, if final projection weight is less than this, we will use the original color. Defaults to 0.1.
complete_unseen (bool, optional): Whether to complete the unseen vertex color using laplacian. Defaults to False.
Returns:
Meshes: the colored mesh
"""
# 1. preprocess inputs
if image_list is None:
raise ValueError("image_list is None")
if cameras_list is None:
if len(image_list) == 8:
cameras_list = get_8view_cameras(device, focal=camera_focal)
elif len(image_list) == 6:
cameras_list = get_6view_cameras(device, focal=camera_focal)
elif len(image_list) == 4:
cameras_list = get_4view_cameras(device, focal=camera_focal)
elif len(image_list) == 2:
cameras_list = get_2view_cameras(device, focal=camera_focal)
else:
raise ValueError("cameras_list is None, and can not be guessed from image_list")
if weights is None:
if len(image_list) == 8:
weights = [2.0, 0.05, 0.2, 0.02, 1.0, 0.02, 0.2, 0.05]
elif len(image_list) == 6:
weights = [2.0, 0.05, 0.2, 1.0, 0.2, 0.05]
elif len(image_list) == 4:
weights = [2.0, 0.2, 1.0, 0.2]
elif len(image_list) == 2:
weights = [1.0, 1.0]
else:
raise ValueError("weights is None, and can not be guessed from image_list")
# 2. run projection
meshes = meshes.clone().to(device)
if weights is None:
weights = [1. for _ in range(len(cameras_list))]
assert len(cameras_list) == len(image_list) == len(weights)
original_color = meshes.textures.verts_features_packed()
assert not torch.isnan(original_color).any()
texture_counts = torch.zeros_like(original_color[..., :1])
texture_values = torch.zeros_like(original_color)
max_texture_counts = torch.zeros_like(original_color[..., :1])
max_texture_values = torch.zeros_like(original_color)
for camera, image, weight in zip(cameras_list, image_list, weights):
ret = project_color(meshes, camera, image, eps=eps, resolution=resolution, device=device, use_alpha=use_alpha)
if reweight_with_cosangle == "linear":
weight = (ret['cos_angles'].abs() * weight)[:, None]
elif reweight_with_cosangle == "square":
weight = (ret['cos_angles'].abs() ** 2 * weight)[:, None]
if use_alpha:
weight = weight * ret['valid_alpha']
assert weight.min() > -0.0001
texture_counts[ret['valid_verts']] += weight
texture_values[ret['valid_verts']] += ret['valid_colors'] * weight
max_texture_values[ret['valid_verts']] = torch.where(weight > max_texture_counts[ret['valid_verts']], ret['valid_colors'], max_texture_values[ret['valid_verts']])
max_texture_counts[ret['valid_verts']] = torch.max(max_texture_counts[ret['valid_verts']], weight)
# Method2
texture_values = torch.where(texture_counts > confidence_threshold, texture_values / texture_counts, texture_values)
if below_confidence_strategy == "smooth":
texture_values = torch.where(texture_counts <= confidence_threshold, (original_color * (confidence_threshold - texture_counts) + texture_values) / confidence_threshold, texture_values)
elif below_confidence_strategy == "original":
texture_values = torch.where(texture_counts <= confidence_threshold, original_color, texture_values)
else:
raise ValueError(f"below_confidence_strategy={below_confidence_strategy} is not supported")
assert not torch.isnan(texture_values).any()
meshes.textures = TexturesVertex(verts_features=[texture_values])
if complete_unseen:
meshes = complete_unseen_vertex_color(meshes, torch.arange(texture_values.shape[0]).to(device)[texture_counts[:, 0] >= confidence_threshold])
ret_mesh = meshes.detach()
del meshes
return ret_mesh
def get_camera(R, T, fov_in_degrees=60, focal_length=1 / (2**0.5), cam_type='fov'):
if cam_type == 'fov':
camera = FoVPerspectiveCameras(device=R.device, R=R, T=T, fov=fov_in_degrees, degrees=True)
else:
focal_length = 1 / focal_length
camera = FoVOrthographicCameras(device=R.device, R=R, T=T, min_x=-focal_length, max_x=focal_length, min_y=-focal_length, max_y=focal_length)
return camera
def get_cameras_list(azim_list, device, focal=2/1.35, dist=1.1):
ret = []
for azim in azim_list:
R, T = look_at_view_transform(dist, 0, azim)
cameras: OrthographicCameras = get_camera(R, T, focal_length=focal, cam_type='orthogonal').to(device)
ret.append(cameras)
return ret
def get_8view_cameras(device, focal=2/1.35):
return get_cameras_list(azim_list = [180, 225, 270, 315, 0, 45, 90, 135], device=device, focal=focal)
def get_6view_cameras(device, focal=2/1.35):
return get_cameras_list(azim_list = [180, 225, 270, 0, 90, 135], device=device, focal=focal)
def get_4view_cameras(device, focal=2/1.35):
return get_cameras_list(azim_list = [180, 270, 0, 90], device=device, focal=focal)
def get_2view_cameras(device, focal=2/1.35):
return get_cameras_list(azim_list = [180, 0], device=device, focal=focal)
def get_multiple_view_cameras(device, focal=2/1.35, offset=180, num_views=8, dist=1.1):
return get_cameras_list(azim_list = (np.linspace(0, 360, num_views+1)[:-1] + offset) % 360, device=device, focal=focal, dist=dist)
def align_with_alpha_bbox(source_img, target_img, final_size=1024):
# align source_img with target_img using alpha channel
# source_img and target_img are PIL.Image.Image
source_img = source_img.convert("RGBA")
target_img = target_img.convert("RGBA").resize((final_size, final_size))
source_np = np.array(source_img)
target_np = np.array(target_img)
source_alpha = source_np[:, :, 3]
target_alpha = target_np[:, :, 3]
bbox_source_min, bbox_source_max = np.argwhere(source_alpha > 0).min(axis=0), np.argwhere(source_alpha > 0).max(axis=0)
bbox_target_min, bbox_target_max = np.argwhere(target_alpha > 0).min(axis=0), np.argwhere(target_alpha > 0).max(axis=0)
source_content = source_np[bbox_source_min[0]:bbox_source_max[0]+1, bbox_source_min[1]:bbox_source_max[1]+1, :]
# resize source_content to fit in the position of target_content
source_content = Image.fromarray(source_content).resize((bbox_target_max[1]-bbox_target_min[1]+1, bbox_target_max[0]-bbox_target_min[0]+1), resample=Image.BICUBIC)
target_np[bbox_target_min[0]:bbox_target_max[0]+1, bbox_target_min[1]:bbox_target_max[1]+1, :] = np.array(source_content)
return Image.fromarray(target_np)
def load_image_list_from_mvdiffusion(mvdiffusion_path, front_from_pil_or_path=None):
import os
image_list = []
for dir in ['front', 'front_right', 'right', 'back', 'left', 'front_left']:
image_path = os.path.join(mvdiffusion_path, f"rgb_000_{dir}.png")
pil = Image.open(image_path)
if dir == 'front':
if front_from_pil_or_path is not None:
if isinstance(front_from_pil_or_path, str):
replace_pil = Image.open(front_from_pil_or_path)
else:
replace_pil = front_from_pil_or_path
# align replace_pil with pil using bounding box in alpha channel
pil = align_with_alpha_bbox(replace_pil, pil, final_size=1024)
image_list.append(pil)
return image_list
def load_image_list_from_img_grid(img_grid_path, resolution = 1024):
img_list = []
grid = Image.open(img_grid_path)
w, h = grid.size
for row in range(0, h, resolution):
for col in range(0, w, resolution):
img_list.append(grid.crop((col, row, col + resolution, row + resolution)))
return img_list