Update app.py
Browse files
app.py
CHANGED
@@ -137,77 +137,77 @@ if st.button('Сгенерировать потери'):
|
|
137 |
|
138 |
|
139 |
|
140 |
-
data_clean, samplerate = torchaudio.load('target.wav')
|
141 |
-
data_lossy, samplerate = torchaudio.load('lossy.wav')
|
142 |
-
data_enhanced, samplerate = torchaudio.load('enhanced.wav')
|
143 |
|
144 |
-
min_len = min(data_clean.shape[1], data_lossy.shape[1], data_enhanced.shape[1])
|
145 |
-
data_clean = data_clean[:, :min_len]
|
146 |
-
data_lossy = data_lossy[:, :min_len]
|
147 |
-
data_enhanced = data_enhanced[:, :min_len]
|
148 |
|
149 |
|
150 |
-
stoi = STOI(samplerate)
|
151 |
|
152 |
-
stoi_orig = round(float(stoi(data_clean, data_clean)),3)
|
153 |
-
stoi_lossy = round(float(stoi(data_clean, data_lossy)),5)
|
154 |
-
stoi_enhanced = round(float(stoi(data_clean, data_enhanced)),5)
|
155 |
|
156 |
-
stoi_mass=[stoi_orig, stoi_lossy, stoi_enhanced]
|
157 |
|
158 |
|
159 |
-
pesq = PESQ(8000, 'nb')
|
160 |
|
161 |
-
data_clean = data_clean.cpu().numpy()
|
162 |
-
data_lossy = data_lossy.cpu().numpy()
|
163 |
-
data_enhanced = data_enhanced.cpu().numpy()
|
164 |
|
165 |
-
if samplerate != 8000:
|
166 |
-
data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=8000)
|
167 |
-
data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=8000)
|
168 |
-
data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=8000)
|
169 |
|
170 |
-
pesq_orig = float(pesq(torch.tensor(data_clean), torch.tensor(data_clean)))
|
171 |
-
pesq_lossy = float(pesq(torch.tensor(data_lossy), torch.tensor(data_clean)))
|
172 |
-
pesq_enhanced = float(pesq(torch.tensor(data_enhanced), torch.tensor(data_clean)))
|
173 |
|
174 |
-
psq_mas=[pesq_orig, pesq_lossy, pesq_enhanced]
|
175 |
|
176 |
|
177 |
|
178 |
|
179 |
|
180 |
#_____________________________________________
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
|
194 |
-
|
195 |
|
196 |
|
197 |
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
|
204 |
|
205 |
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
|
210 |
-
|
211 |
|
212 |
|
213 |
|
|
|
137 |
|
138 |
|
139 |
|
140 |
+
#data_clean, samplerate = torchaudio.load('target.wav')
|
141 |
+
#data_lossy, samplerate = torchaudio.load('lossy.wav')
|
142 |
+
#data_enhanced, samplerate = torchaudio.load('enhanced.wav')
|
143 |
|
144 |
+
#min_len = min(data_clean.shape[1], data_lossy.shape[1], data_enhanced.shape[1])
|
145 |
+
#data_clean = data_clean[:, :min_len]
|
146 |
+
#data_lossy = data_lossy[:, :min_len]
|
147 |
+
#data_enhanced = data_enhanced[:, :min_len]
|
148 |
|
149 |
|
150 |
+
#stoi = STOI(samplerate)
|
151 |
|
152 |
+
#stoi_orig = round(float(stoi(data_clean, data_clean)),3)
|
153 |
+
#stoi_lossy = round(float(stoi(data_clean, data_lossy)),5)
|
154 |
+
#stoi_enhanced = round(float(stoi(data_clean, data_enhanced)),5)
|
155 |
|
156 |
+
#stoi_mass=[stoi_orig, stoi_lossy, stoi_enhanced]
|
157 |
|
158 |
|
159 |
+
#pesq = PESQ(8000, 'nb')
|
160 |
|
161 |
+
#data_clean = data_clean.cpu().numpy()
|
162 |
+
#data_lossy = data_lossy.cpu().numpy()
|
163 |
+
#data_enhanced = data_enhanced.cpu().numpy()
|
164 |
|
165 |
+
#if samplerate != 8000:
|
166 |
+
#data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=8000)
|
167 |
+
#data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=8000)
|
168 |
+
#data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=8000)
|
169 |
|
170 |
+
#pesq_orig = float(pesq(torch.tensor(data_clean), torch.tensor(data_clean)))
|
171 |
+
#pesq_lossy = float(pesq(torch.tensor(data_lossy), torch.tensor(data_clean)))
|
172 |
+
#pesq_enhanced = float(pesq(torch.tensor(data_enhanced), torch.tensor(data_clean)))
|
173 |
|
174 |
+
#psq_mas=[pesq_orig, pesq_lossy, pesq_enhanced]
|
175 |
|
176 |
|
177 |
|
178 |
|
179 |
|
180 |
#_____________________________________________
|
181 |
+
data_clean, samplerate = sf.read('target.wav')
|
182 |
+
data_lossy, samplerate = sf.read('lossy.wav')
|
183 |
+
data_enhanced, samplerate = sf.read('enhanced.wav')
|
184 |
+
min_len = min(data_clean.shape[0], data_lossy.shape[0], data_enhanced.shape[0])
|
185 |
+
data_clean = data_clean[:min_len]
|
186 |
+
data_lossy = data_lossy[:min_len]
|
187 |
+
data_enhanced = data_enhanced[:min_len]
|
188 |
+
|
189 |
+
|
190 |
+
stoi_orig = round(stoi(data_clean, data_clean, samplerate, extended=False),5)
|
191 |
+
stoi_lossy = round(stoi(data_clean, data_lossy , samplerate, extended=False),5)
|
192 |
+
stoi_enhanced = round(stoi(data_clean, data_enhanced, samplerate, extended=False),5)
|
193 |
|
194 |
+
stoi_mass=[stoi_orig, stoi_lossy, stoi_enhanced]
|
195 |
|
196 |
|
197 |
|
198 |
|
199 |
+
if samplerate != 8000:
|
200 |
+
data_lossy = librosa.resample(data_lossy, orig_sr=48000, target_sr=8000)
|
201 |
+
data_clean = librosa.resample(data_clean, orig_sr=48000, target_sr=8000)
|
202 |
+
data_enhanced = librosa.resample(data_enhanced, orig_sr=48000, target_sr=8000)
|
203 |
|
204 |
|
205 |
|
206 |
+
pesq_orig = pesq(fs = 8000, ref = data_clean, deg = data_clean, mode='nb')
|
207 |
+
pesq_lossy = pesq(fs = 8000, ref = data_clean, deg = data_lossy, mode='nb')
|
208 |
+
pesq_enhanced = pesq(fs = 8000, ref = data_clean, deg = data_enhanced, mode='nb')
|
209 |
|
210 |
+
psq_mas=[pesq_orig, pesq_lossy, pesq_enhanced]
|
211 |
|
212 |
|
213 |
|