Update app.py
Browse files
app.py
CHANGED
@@ -45,10 +45,7 @@ def inference(re_im, session, onnx_model, input_names, output_names):
|
|
45 |
dtype=np.float32)
|
46 |
for i, _input in enumerate(onnx_model.graph.input)
|
47 |
}
|
48 |
-
|
49 |
-
dtype=np.float16)
|
50 |
-
for i, _input in enumerate(onnx_model.graph.input)
|
51 |
-
}
|
52 |
output_audio = []
|
53 |
for t in range(re_im.shape[0]):
|
54 |
inputs[input_names[0]] = re_im[t]
|
@@ -143,8 +140,7 @@ hann = torch.sqrt(torch.hann_window(window))
|
|
143 |
lossy_input_tensor = torch.tensor(lossy_input)
|
144 |
re_im = torch.stft(lossy_input_tensor, window, stride, window=hann, return_complex=False).permute(1, 0, 2).unsqueeze(
|
145 |
1).numpy().astype(np.float32)
|
146 |
-
|
147 |
-
1).numpy().astype(np.float16)
|
148 |
|
149 |
session, onnx_model, input_names, output_names = load_model(model_ver)
|
150 |
|
|
|
45 |
dtype=np.float32)
|
46 |
for i, _input in enumerate(onnx_model.graph.input)
|
47 |
}
|
48 |
+
|
|
|
|
|
|
|
49 |
output_audio = []
|
50 |
for t in range(re_im.shape[0]):
|
51 |
inputs[input_names[0]] = re_im[t]
|
|
|
140 |
lossy_input_tensor = torch.tensor(lossy_input)
|
141 |
re_im = torch.stft(lossy_input_tensor, window, stride, window=hann, return_complex=False).permute(1, 0, 2).unsqueeze(
|
142 |
1).numpy().astype(np.float32)
|
143 |
+
|
|
|
144 |
|
145 |
session, onnx_model, input_names, output_names = load_model(model_ver)
|
146 |
|