Spaces:
Sleeping
Sleeping
XS-dev
commited on
Commit
•
a5c42f2
1
Parent(s):
7105a67
按要求创建了文件夹,但是不知道tmd到底是什么文件在这个文件夹里面
Browse files- my-bert-model/config.json +23 -0
- my-bert-model/modeling_bert.py +95 -0
- my-bert-model/pytorch_model.bin +3 -0
- my-bert-model/tokenizer.json +0 -0
- my-bert-model/tokenizer_config.json +1 -0
- my-bert-model/utils_data.py +45 -0
- my-bert-model/vocab.txt +0 -0
my-bert-model/config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForMaskedLM"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"gradient_checkpointing": false,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 3072,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"model_type": "bert",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 12,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"position_embedding_type": "absolute",
|
19 |
+
"transformers_version": "4.6.0.dev0",
|
20 |
+
"type_vocab_size": 2,
|
21 |
+
"use_cache": true,
|
22 |
+
"vocab_size": 30522
|
23 |
+
}
|
my-bert-model/modeling_bert.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
import torch
|
3 |
+
import torch.utils.checkpoint
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
6 |
+
from transformers import BertPreTrainedModel, BertModel
|
7 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
8 |
+
|
9 |
+
|
10 |
+
class BertForSequenceClassification(BertPreTrainedModel):
|
11 |
+
def __init__(self, config):
|
12 |
+
super().__init__(config)
|
13 |
+
self.num_labels = config.num_labels
|
14 |
+
self.config = config
|
15 |
+
|
16 |
+
self.bert = BertModel(config)
|
17 |
+
classifier_dropout = (
|
18 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
19 |
+
)
|
20 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
21 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
22 |
+
|
23 |
+
# Initialize weights and apply final processing
|
24 |
+
self.post_init()
|
25 |
+
|
26 |
+
def forward(
|
27 |
+
self,
|
28 |
+
input_ids: Optional[torch.Tensor] = None,
|
29 |
+
attention_mask: Optional[torch.Tensor] = None,
|
30 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
31 |
+
position_ids: Optional[torch.Tensor] = None,
|
32 |
+
head_mask: Optional[torch.Tensor] = None,
|
33 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
34 |
+
labels: Optional[torch.Tensor] = None,
|
35 |
+
output_attentions: Optional[bool] = None,
|
36 |
+
output_hidden_states: Optional[bool] = None,
|
37 |
+
return_dict: Optional[bool] = None,
|
38 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
39 |
+
r"""
|
40 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
41 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
42 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
43 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
44 |
+
"""
|
45 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
46 |
+
|
47 |
+
outputs = self.bert(
|
48 |
+
input_ids,
|
49 |
+
attention_mask=attention_mask,
|
50 |
+
token_type_ids=token_type_ids,
|
51 |
+
position_ids=position_ids,
|
52 |
+
head_mask=head_mask,
|
53 |
+
inputs_embeds=inputs_embeds,
|
54 |
+
output_attentions=output_attentions,
|
55 |
+
output_hidden_states=output_hidden_states,
|
56 |
+
return_dict=return_dict,
|
57 |
+
)
|
58 |
+
|
59 |
+
pooled_output = outputs[1]
|
60 |
+
|
61 |
+
pooled_output = self.dropout(pooled_output)
|
62 |
+
logits = self.classifier(pooled_output)
|
63 |
+
|
64 |
+
loss = None
|
65 |
+
if labels is not None:
|
66 |
+
if self.config.problem_type is None:
|
67 |
+
if self.num_labels == 1:
|
68 |
+
self.config.problem_type = "regression"
|
69 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
70 |
+
self.config.problem_type = "single_label_classification"
|
71 |
+
else:
|
72 |
+
self.config.problem_type = "multi_label_classification"
|
73 |
+
|
74 |
+
if self.config.problem_type == "regression":
|
75 |
+
loss_fct = MSELoss()
|
76 |
+
if self.num_labels == 1:
|
77 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
78 |
+
else:
|
79 |
+
loss = loss_fct(logits, labels)
|
80 |
+
elif self.config.problem_type == "single_label_classification":
|
81 |
+
loss_fct = CrossEntropyLoss()
|
82 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
83 |
+
elif self.config.problem_type == "multi_label_classification":
|
84 |
+
loss_fct = BCEWithLogitsLoss()
|
85 |
+
loss = loss_fct(logits, labels)
|
86 |
+
if not return_dict:
|
87 |
+
output = (logits,) + outputs[2:]
|
88 |
+
return ((loss,) + output) if loss is not None else output
|
89 |
+
|
90 |
+
return SequenceClassifierOutput(
|
91 |
+
loss=loss,
|
92 |
+
logits=logits,
|
93 |
+
hidden_states=outputs.hidden_states,
|
94 |
+
attentions=outputs.attentions,
|
95 |
+
)
|
my-bert-model/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:097417381d6c7230bd9e3557456d726de6e83245ec8b24f529f60198a67b203a
|
3 |
+
size 440473133
|
my-bert-model/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
my-bert-model/tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "model_max_length": 512}
|
my-bert-model/utils_data.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.utils.data import Dataset
|
2 |
+
import torch
|
3 |
+
import pandas as pd
|
4 |
+
|
5 |
+
def load_data(args, split):
|
6 |
+
df = pd.read_csv(f"{args.data_root}/{split}.csv")
|
7 |
+
texts = df['text'].values.tolist()
|
8 |
+
labels = df['target'].values.tolist()
|
9 |
+
return texts, labels
|
10 |
+
|
11 |
+
class MyDataset(Dataset):
|
12 |
+
def __init__(self, data, tokenizer, max_length, is_test):
|
13 |
+
self.tokenizer = tokenizer
|
14 |
+
self.max_length = max_length
|
15 |
+
self.texts = data[0]
|
16 |
+
self.labels = data[1]
|
17 |
+
self.is_test = is_test
|
18 |
+
|
19 |
+
def __len__(self):
|
20 |
+
"""returns the length of dataframe"""
|
21 |
+
return len(self.texts)
|
22 |
+
|
23 |
+
def __getitem__(self, index):
|
24 |
+
"""return the input ids, attention masks and target ids"""
|
25 |
+
text = str(self.texts[index])
|
26 |
+
source = self.tokenizer.batch_encode_plus(
|
27 |
+
[text],
|
28 |
+
max_length=self.max_length,
|
29 |
+
pad_to_max_length=True,
|
30 |
+
truncation=True,
|
31 |
+
padding="max_length",
|
32 |
+
return_tensors="pt",
|
33 |
+
)
|
34 |
+
source_ids = source["input_ids"].squeeze()
|
35 |
+
source_mask = source["attention_mask"].squeeze()
|
36 |
+
data_sample = {
|
37 |
+
"input_ids": source_ids,
|
38 |
+
"attention_mask": source_mask,
|
39 |
+
}
|
40 |
+
if not self.is_test:
|
41 |
+
label = self.labels[index]
|
42 |
+
target_ids = torch.tensor(label).squeeze()
|
43 |
+
data_sample["labels"] = target_ids
|
44 |
+
return data_sample
|
45 |
+
|
my-bert-model/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|