File size: 5,497 Bytes
4822df2
 
 
 
 
 
 
 
 
 
 
 
00f77c2
4822df2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00f77c2
4822df2
9ce97dc
4822df2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00f77c2
9ce97dc
 
 
 
 
 
 
 
 
 
00f77c2
4822df2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ce97dc
4822df2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

from math import ceil, floor
import streamlit.components.v1 as components
from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
)
import streamlit as st
import sys
import os
import json
from urllib.parse import quote
from huggingface_hub import hf_hub_download

# Allow direct execution
sys.path.insert(0, os.path.join(os.path.dirname(os.path.abspath(__file__)), 'src'))  # noqa

from predict import SegmentationArguments, ClassifierArguments, predict as pred, seconds_to_time  # noqa
from evaluate import EvaluationArguments
from shared import device

st.set_page_config(
    page_title="SponsorBlock ML",
    page_icon="🤖",
    #  layout='wide',
    #  initial_sidebar_state="expanded",
    menu_items={
        'Get Help': 'https://github.com/xenova/sponsorblock-ml',
        'Report a bug': 'https://github.com/xenova/sponsorblock-ml/issues/new/choose',
        #  'About': "# This is a header. This is an *extremely* cool app!"
    }
)

MODEL_PATH = 'Xenova/sponsorblock-small_v2022.01.19'

CLASSIFIER_PATH = 'Xenova/sponsorblock-classifier'


@st.cache(allow_output_mutation=True)
def persistdata():
    return {}


# Faster caching system for predictions (No need to hash)
predictions_cache = persistdata()


@st.cache(allow_output_mutation=True)
def load_predict():
    # Use default segmentation and classification arguments
    evaluation_args = EvaluationArguments(model_path=MODEL_PATH)
    segmentation_args = SegmentationArguments()
    classifier_args = ClassifierArguments()

    model = AutoModelForSeq2SeqLM.from_pretrained(evaluation_args.model_path)
    model.to(device())

    tokenizer = AutoTokenizer.from_pretrained(evaluation_args.model_path)

    # Save classifier and vectorizer
    hf_hub_download(repo_id=CLASSIFIER_PATH,
                    filename=classifier_args.classifier_file,
                    cache_dir=classifier_args.classifier_dir,
                    force_filename=classifier_args.classifier_file,
                    )
    hf_hub_download(repo_id=CLASSIFIER_PATH,
                    filename=classifier_args.vectorizer_file,
                    cache_dir=classifier_args.classifier_dir,
                    force_filename=classifier_args.vectorizer_file,
                    )

    def predict_function(video_id):
        if video_id not in predictions_cache:
            predictions_cache[video_id] = pred(
                video_id, model, tokenizer,
                segmentation_args=segmentation_args,
                classifier_args=classifier_args
            )
        return predictions_cache[video_id]

    return predict_function


CATGEGORY_OPTIONS = {
    'SPONSOR': 'Sponsor',
    'SELFPROMO': 'Self/unpaid promo',
    'INTERACTION': 'Interaction reminder',
}


# Load prediction function
predict = load_predict()


def main():

    # Display heading and subheading
    st.write('# SponsorBlock ML')
    st.write('##### Automatically detect in-video YouTube sponsorships, self/unpaid promotions, and interaction reminders.')

    # Load widgets
    video_id = st.text_input('Video ID:')  # , placeholder='e.g., axtQvkSpoto'

    categories = st.multiselect('Categories:',
                                CATGEGORY_OPTIONS.keys(),
                                CATGEGORY_OPTIONS.keys(),
                                format_func=CATGEGORY_OPTIONS.get
                                )

    # Hide segments with a confidence lower than
    confidence_threshold = st.slider(
        'Confidence Threshold (%):', min_value=0, max_value=100)

    video_id_length = len(video_id)
    if video_id_length == 0:
        return

    elif video_id_length != 11:
        st.exception(ValueError('Invalid YouTube ID'))
        return

    with st.spinner('Running model...'):
        predictions = predict(video_id)

    if len(predictions) == 0:
        st.success('No segments found!')
        return

    submit_segments = []
    for index, prediction in enumerate(predictions, start=1):
        if prediction['category'] not in categories:
            continue  # Skip

        confidence = prediction['probability'] * 100

        if confidence < confidence_threshold:
            continue

        submit_segments.append({
            'segment': [prediction['start'], prediction['end']],
            'category': prediction['category'].lower(),
            'actionType': 'skip'
        })
        start_time = seconds_to_time(prediction['start'])
        end_time = seconds_to_time(prediction['end'])
        with st.expander(
            f"[{prediction['category']}] Prediction #{index} ({start_time} \u2192 {end_time})"
        ):

            url = f"https://www.youtube-nocookie.com/embed/{video_id}?&start={floor(prediction['start'])}&end={ceil(prediction['end'])}"
            # autoplay=1controls=0&&modestbranding=1&fs=0

            # , width=None, height=None, scrolling=False
            components.iframe(url, width=670, height=376)

            text = ' '.join(w['text'] for w in prediction['words'])
            st.write(f"**Times:** {start_time} \u2192 {end_time}")
            st.write(
                f"**Category:** {CATGEGORY_OPTIONS[prediction['category']]}")
            st.write(f"**Confidence:** {confidence:.2f}%")
            st.write(f'**Text:** "{text}"')

    json_data = quote(json.dumps(submit_segments))
    link = f'[Submit Segments](https://www.youtube.com/watch?v={video_id}#segments={json_data})'
    st.markdown(link, unsafe_allow_html=True)


if __name__ == '__main__':
    main()