File size: 10,752 Bytes
25f1183
90d1f68
5fbdd3c
 
 
 
 
bb58e90
 
5fbdd3c
 
 
 
 
 
 
bb58e90
5fbdd3c
 
90d1f68
 
5fbdd3c
90d1f68
5fbdd3c
 
 
 
69fe24d
5fbdd3c
bb58e90
5fbdd3c
9b9ffd0
5fbdd3c
 
 
 
bb58e90
 
5fbdd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b9ffd0
 
 
 
 
 
 
 
 
25f1183
 
 
5fbdd3c
 
 
 
 
25f1183
5fbdd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb58e90
 
5fbdd3c
 
 
 
90d1f68
 
5fbdd3c
 
 
 
 
 
25f1183
 
5fbdd3c
25f1183
 
 
 
 
 
 
 
 
 
 
 
ad7fc61
bb58e90
ad7fc61
 
25f1183
5fbdd3c
25f1183
 
 
 
 
 
 
 
 
5fbdd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69fe24d
5fbdd3c
 
 
 
 
 
69fe24d
25f1183
bb58e90
 
5fbdd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25f1183
 
 
5fbdd3c
 
 
90d1f68
5fbdd3c
bb58e90
 
 
 
 
 
5fbdd3c
 
 
 
 
 
 
90d1f68
 
5fbdd3c
 
25f1183
5fbdd3c
 
69fe24d
5fbdd3c
 
 
 
 
 
 
 
 
 
 
 
90d1f68
5fbdd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
90d1f68
 
5fbdd3c
 
 
 
 
 
 
90d1f68
 
 
5fbdd3c
 
 
 
 
25f1183
 
 
 
 
5fbdd3c
 
 
 
 
 
90d1f68
5fbdd3c
 
90d1f68
5fbdd3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b9ffd0
 
 
 
bb58e90
5fbdd3c
 
 
25f1183
5fbdd3c
74c1216
 
 
 
5fbdd3c
74c1216
 
 
 
 
 
25f1183
90d1f68
 
74c1216
5fbdd3c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
from shared import START_SEGMENT_TEMPLATE, END_SEGMENT_TEMPLATE
from utils import re_findall
from shared import OutputArguments
from typing import Optional
from segment import (
    generate_segments,
    extract_segment,
    MIN_SAFETY_TOKENS,
    SAFETY_TOKENS_PERCENTAGE,
    CustomTokens,
    word_start,
    word_end,
    SegmentationArguments
)
import preprocess
from errors import TranscriptError
from model import get_classifier_vectorizer, get_model_tokenizer
from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    HfArgumentParser
)
from transformers.trainer_utils import get_last_checkpoint
from dataclasses import dataclass, field
from shared import device
import logging

import re

from shared import seconds_to_time
@dataclass
class TrainingOutputArguments:

    model_path: str = field(
        default=None,
        metadata={
            'help': 'Path to pretrained model used for prediction'
        }
    )

    output_dir: Optional[str] = OutputArguments.__dataclass_fields__[
        'output_dir']

    def __post_init__(self):
        if self.model_path is not None:
            return

        last_checkpoint = get_last_checkpoint(self.output_dir)
        if last_checkpoint is not None:
            self.model_path = last_checkpoint
        else:
            raise Exception(
                'Unable to find model, explicitly set `--model_path`')


@dataclass
class PredictArguments(TrainingOutputArguments):
    video_id: str = field(
        default=None,
        metadata={
            'help': 'Video to predict sponsorship segments for'}
    )


_SEGMENT_START = START_SEGMENT_TEMPLATE.format(r'(?P<category>\w+)')
_SEGMENT_END = END_SEGMENT_TEMPLATE.format(r'\w+')
SEGMENT_MATCH_RE = fr'{_SEGMENT_START}\s*(?P<text>.*?)\s*(?:{_SEGMENT_END}|$)'

MATCH_WINDOW = 25       # Increase for accuracy, but takes longer: O(n^3)
MERGE_TIME_WITHIN = 8   # Merge predictions if they are within x seconds


@dataclass(frozen=True, eq=True)
class ClassifierArguments:
    classifier_dir: Optional[str] = field(
        default='classifiers',
        metadata={
            'help': 'The directory that contains the classifier and vectorizer.'
        }
    )

    classifier_file: Optional[str] = field(
        default='classifier.pickle',
        metadata={
            'help': 'The name of the classifier'
        }
    )

    vectorizer_file: Optional[str] = field(
        default='vectorizer.pickle',
        metadata={
            'help': 'The name of the vectorizer'
        }
    )

    min_probability: float = field(
        default=0.5, metadata={'help': 'Remove all predictions whose classification probability is below this threshold.'})


# classifier, vectorizer,
def filter_and_add_probabilities(predictions, classifier_args):
    """Use classifier to filter predictions"""
    if not predictions:
        return predictions

    classifier, vectorizer = get_classifier_vectorizer(classifier_args)

    transformed_segments = vectorizer.transform([
        preprocess.clean_text(' '.join([x['text'] for x in pred['words']]))
        for pred in predictions
    ])
    probabilities = classifier.predict_proba(transformed_segments)

    # Transformer sometimes says segment is of another category, so we
    # update category and probabilities if classifier is confident it is another category
    filtered_predictions = []
    for prediction, probabilities in zip(predictions, probabilities):
        predicted_probabilities = {k: v for k,
                                   v in zip(CATEGORIES, probabilities)}

        # Get best category + probability
        classifier_category = max(
            predicted_probabilities, key=predicted_probabilities.get)
        classifier_probability = predicted_probabilities[classifier_category]

        if classifier_category is None and classifier_probability > classifier_args.min_probability:
            continue  # Ignore

        if (prediction['category'] not in predicted_probabilities) \
                or (classifier_category is not None and classifier_probability > 0.5):  # TODO make param
            # Unknown category or we are confident enough to overrule,
            # so change category to what was predicted by classifier
            prediction['category'] = classifier_category

        prediction['probability'] = predicted_probabilities[prediction['category']]

        # TODO add probabilities, but remove None and normalise rest
        prediction['probabilities'] = predicted_probabilities

        # if prediction['probability'] < classifier_args.min_probability:
        #     continue

        filtered_predictions.append(prediction)

    return filtered_predictions


def predict(video_id, model, tokenizer, segmentation_args, words=None, classifier_args=None):
    # Allow words to be passed in so that we don't have to get the words if we already have them
    if words is None:
        words = preprocess.get_words(video_id)
        if not words:
            raise TranscriptError('Unable to retrieve transcript')

    segments = generate_segments(
        words,
        tokenizer,
        segmentation_args
    )

    predictions = segments_to_predictions(segments, model, tokenizer)
    # Add words back to time_ranges
    for prediction in predictions:
        # Stores words in the range
        prediction['words'] = extract_segment(
            words, prediction['start'], prediction['end'])

    # TODO add back
    if classifier_args is not None:
        predictions = filter_and_add_probabilities(
            predictions, classifier_args)

    return predictions


def greedy_match(list, sublist):
    # Return index and length of longest matching sublist

    best_i = -1
    best_j = -1
    best_k = 0

    for i in range(len(list)):  # Start position in main list
        for j in range(len(sublist)):  # Start position in sublist
            for k in range(len(sublist)-j, 0, -1):  # Width of sublist window
                if k > best_k and list[i:i+k] == sublist[j:j+k]:
                    best_i, best_j, best_k = i, j, k
                    break  # Since window size decreases

    return best_i, best_j, best_k


CATEGORIES = [None, 'SPONSOR', 'SELFPROMO', 'INTERACTION']


def predict_sponsor_text(text, model, tokenizer):
    """Given a body of text, predict the words which are part of the sponsor"""
    input_ids = tokenizer(
        f'{CustomTokens.EXTRACT_SEGMENTS_PREFIX.value} {text}', return_tensors='pt', truncation=True).input_ids.to(device())

    max_out_len = round(min(
        max(
            len(input_ids[0])/SAFETY_TOKENS_PERCENTAGE,
            len(input_ids[0]) + MIN_SAFETY_TOKENS
        ),
        model.model_dim))
    outputs = model.generate(input_ids, max_length=max_out_len)

    return tokenizer.decode(outputs[0], skip_special_tokens=True)


def predict_sponsor_matches(text, model, tokenizer):
    sponsorship_text = predict_sponsor_text(text, model, tokenizer)

    if CustomTokens.NO_SEGMENT.value in sponsorship_text:
        return []

    return re_findall(SEGMENT_MATCH_RE, sponsorship_text)


def segments_to_predictions(segments, model, tokenizer):
    predicted_time_ranges = []

    # TODO pass to model simultaneously, not in for loop
    # use 2d array for input ids
    for segment in segments:
        cleaned_batch = [preprocess.clean_text(
            word['text']) for word in segment]
        batch_text = ' '.join(cleaned_batch)

        matches = predict_sponsor_matches(batch_text, model, tokenizer)

        for match in matches:
            matched_text = match['text'].split()
            # TODO skip if too short

            i1, j1, k1 = greedy_match(
                cleaned_batch, matched_text[:MATCH_WINDOW])
            i2, j2, k2 = greedy_match(
                cleaned_batch, matched_text[-MATCH_WINDOW:])

            extracted_words = segment[i1:i2+k2]

            if not extracted_words:
                continue

            predicted_time_ranges.append({
                'start': word_start(extracted_words[0]),
                'end': word_end(extracted_words[-1]),
                'category': match['category']
            })

    # Necessary to sort matches by start time
    predicted_time_ranges.sort(key=word_start)

    # Merge overlapping predictions and sponsorships that are close together
    # Caused by model having max input size

    prev_prediction = None

    final_predicted_time_ranges = []
    for range in predicted_time_ranges:
        start_time = range['start']
        end_time = range['end']

        if prev_prediction is not None and \
                (start_time <= prev_prediction['end'] <= end_time or    # Merge overlapping segments
                    (range['category'] == prev_prediction['category']   # Merge disconnected segments if same category and within threshold
                        and start_time - prev_prediction['end'] <= MERGE_TIME_WITHIN)):
            # Extend last prediction range
            final_predicted_time_ranges[-1]['end'] = end_time

        else:  # No overlap, is a new prediction
            final_predicted_time_ranges.append({
                'start': start_time,
                'end': end_time,
                'category': range['category']
            })

        prev_prediction = range

    return final_predicted_time_ranges


def main():
    # Test on unseen data
    logging.getLogger().setLevel(logging.DEBUG)

    hf_parser = HfArgumentParser((
        PredictArguments,
        SegmentationArguments,
        ClassifierArguments
    ))
    predict_args, segmentation_args, classifier_args = hf_parser.parse_args_into_dataclasses()

    if predict_args.video_id is None:
        print('No video ID supplied. Use `--video_id`.')
        return

    model, tokenizer = get_model_tokenizer(predict_args.model_path)

    predict_args.video_id = predict_args.video_id.strip()
    predictions = predict(predict_args.video_id, model, tokenizer,
                          segmentation_args, classifier_args=classifier_args)

    video_url = f'https://www.youtube.com/watch?v={predict_args.video_id}'
    if not predictions:
        print('No predictions found for', video_url)
        return

    print(len(predictions), 'predictions found for', video_url)
    for index, prediction in enumerate(predictions, start=1):
        print(f'Prediction #{index}:')
        print('Text: "',
              ' '.join([w['text'] for w in prediction['words']]), '"', sep='')
        print('Time:', seconds_to_time(
            prediction['start']), '\u2192', seconds_to_time(prediction['end']))
        print('Probability:', prediction.get('probability'))
        print('Category:', prediction.get('category'))
        print()


if __name__ == '__main__':
    main()